

PHASE II SUBSURFACE INVESTIGATION

6253 S. Cottage Grove Avenue Chicago, Illinois 60637 Cook County

Prepared For:

Preservation of Affordable Housing One North LaSalle Suite 1750 Chicago, IL 60602

August 25, 2016

CERTIFICATION

To the best of my knowledge and belief this investigation and evaluation have been performed in conformance with all applicable legal requirements and accepted practices prevailing in the environmental consulting industries. The personnel who performed the investigation are properly licensed and certified in accordance with the requirements of all federal, state, and local laws, rules and regulations.

K-Plus Engineering, its officers, and its employees have no present or contemplated interest in the property or the parties involved. Our employment and compensation for preparing this report are not contingent upon any action or event resulting from the analyses, opinions, observations, or conclusions, in or from the use of, this report. The statements contained herein, on which our observations, opinions, and conclusions were based, are deemed factual. The reported analyses, opinions, observations, and conclusions are unbiased, professional, and limited only by the reported assumptions, qualifications, and conditions stated herein. All information in this report is from sources deemed to be reliable; however, no representation or warranty is made as to the accuracy thereof. If necessary, expert testimony and other legal appearances will be provided for a reasonable fee to be arranged.

This report has been prepared specifically for the use by our client. No third party may use the information in this report without obtaining the permission of both K-Plus Engineering and the client, for whom this report was prepared. In no event may this report be used in whole or in part in any public offering or security without the prior written consent of K-Plus Engineering. No abridgment, abstracting, or excerpting of this report may be made for any purpose whatsoever without obtaining the permission of K-Plus Engineering.

Sincerely, K-PLUS ENGINEERING,

. 7 M.

Aaron Colin Environmental Professional

Caslece

Daniel M. Caplice, P.E. Senior Project Advisor

TABLE OF CONTENTS

1.0		INTRODUCTION	1
2.0		SUBJECT PROPERTY	2
	2.1	Site Location	2
	2.2	PIN & Legal Description	2
	2.3	Site Features	3
	2.4	Surrounding Area	3
	2.5	Topography	4
	2.6	Site Geology	5
3.0		SITE HISTORY	6
4.0		METHODS AND EQUIPMENT	7
	4.1	Drilling	7
	4.2	Field Screening and Soil Sampling	7
	4.3	Sample Preservation and Laboratory Analysis	8
		4.3.1 Soil	8
		4.3.2 Groundwater	8
	4.4	Decontamination	9
5.0		INVESTIGATION FINDINGS	10
	5.1	Field Observations	10
	5.2	Soil Analytical Results	11
	5.2	Groundwater Analytical Results	12
	5.3	Indoor Inhalation Evaluation	12
6.0	CO	ONCLUSIONS	13

LIST OF FIGURES

Figure 1	-	Site Location	.2
Figure 2	-	Surrounding Area	.3
Figure 3	-	Topographic Map	.4
Figure 4	-	Berg Map	.5

LIST OF APPENDICES

1	-	Boring Locations Figure
2	-	Soil Results Tables
3	-	Groundwater Results Table
4	-	Indoor Inhalation Results Table
5	-	Laboratory Data Sheets – Soil
6	-	Laboratory Data Sheets – Groundwater
7	-	Boring Logs
8	-	Investigation Photographs
9	-	Historical Records
10	-	Qualifications
	1 2 3 4 5 6 7 8 9 10	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 -

1.0 INTRODUCTION

K-Plus Engineering, LLC (K-Plus) conducted a Subsurface Investigation (SSI) of the former commercial and planned residential property located at 6253 S. Cottage Grove Avenue in Chicago, Illinois (Subject Property).

This SSI was conducted as a result of a Recognized Environmental Condition (REC) identified in Phase I Environmental Site Assessments for the property conducted in July 2014 and February 2016. According to historic records, the property was developed before 1895 with commercial storefronts. Historic Sanborn maps indicate that from at least 1926 through 1950 the site contained a dry cleaning operation and 6 underground storage tanks (USTs) containing "benzine" at 822-824 E. 63rd Street. Records from the Chicago Fire Department indicate that in 1945 a permit was issued for one 1,000-gallon fuel oil UST, and in 1951 a permit was issued for three 1,000-gallon USTs and one 500-gallon UST containing solvents at 820 E. 63rd St. No further information regarding the permits was available. The property was re-developed in 1969 for commercial use is currently vacant following the demolition of those buildings in 2016. Development of the site for a multi-tenant residential building is planned to begin in 2017.

K-Plus was hired to perform a subsurface investigation in order to determine whether significant contamination is present on the property due to historical use. In order to evaluate the subsurface soils, K-Plus advanced a total of thirteen borings at the property to depths of up to 16 feet below grade. Five of the soil samples were converted to monitoring wells for groundwater analysis. Soil samples were collected from twelve of the thirteen borings at the Subject Property and twenty-one samples were submitted for potential analytical testing. Fourteen of the submitted soil samples were analyzed for volatile organic compounds (VOCs), the compounds most commonly found in dry cleaning operations and which include benzene, the material identified in historical maps of the site. Because the exact nature of the tanks was unknown, the sample nearest the tank location identified on historical maps was also analyzed for semi-volatile organic compounds (SVOCs), including the subset polynuclear aromatic hydrocarbons (PNAs), in order to determine whether other compounds commonly found in USTs were detectable at the site. One of the borings (B8) met refusal and thus could not be sampled. Five groundwater samples were also collected from five groundwater monitoring wells installed on site and submitted for analysis of VOCs. This report outlines the investigation activities that were completed by K-Plus at the Subject Property.

This field investigation was completed on Thursday, August 11, 2016 by Mr. Aaron Colin and Ms. Patricia Walchessen for K-Plus. Groundwater sampling took place on Tuesday, August 16, 2015. The weather conditions at the time of the inspection were partially sunny with a temperature of approximately 85 degrees Fahrenheit (°F). As a tool in preparing this report and documenting the conditions encountered at the property, various photographs of the Subject Property, surrounding land use, and other relevant features were taken. These photographs, along with copies of all other

supporting documents that were relied upon during this project have also been included as appendices in this report.

2.0 SUBJECT PROPERTY

2.1 Site Location

The Subject Property was located on the north side of E. 63^{rd} Street, between S. Cottage Grove Avenue and Drexel Avenue in the Woodlawn neighborhood on the south side of Chicago, Illinois (Figure 1).

Figure 1 – Site Location Map

2.2 PIN & Legal Description

The Parcel Identification Number (PIN) for the Subject Property was identified as: 20-14-313-020.

The legal description for the property is as follows:

```
LOTS 18 THROUGH 33 IN H.M. HARPER'S ADDITION TO CHICAGO, A SUBDIVISION OF BLOCK
7 IN CHARLES BUSBY'S SUBDIVISIONS OF THE SOUTH HALF OF THE SOUTH WEST
QUARTER (EXCEPT 2 ½ ACRES) OF SECTION 14, TOWNSHIP 38 NORTH, RANGE 14 EAST OF
```


THE THIRD PRINCIPAL MERIDIAN.

ALLEYS: THE NORTH SOUTH 16 FOOT ALLEY LYING WEST OF AND ADJOINING LOT 27 AND EAST OF AND ADJOINING LOTS 28 TO 32; ALSO THAT PART OF THE EAST WEST 20 FOOT ALLEY LYING NORTH AND ADJOINING THE NORTH LINE OF LOTS 19 TO 27, SOUTH AND ADJOINING LOT 18 AND EAST OF THE WEST LINE OF SAID LOT 18, EXTENDED SOUTH; ALSO THAT PART OF ALLEY LYING EAST AND ADJOINING LOT 33 AND THE LOT LINES OF LOT 33, EXTENDED EAST, AND LYING WEST OF THE WEST LINE OF LOT 18 EXTENDED SOUTH, ALL IN H.M. HARPER'S ADDITION TO CHICAGO, AFORESAID, IN COOK COUNTY, ILLINOIS.

2.3 Site Features

The Subject Property measured approximately 1.3 acres (56,940 square feet (ft^2)) and is currently vacant ground surrounded by a chain link fence. The western area of the site is sectioned off from the remainder of the Subject Property by a chain link fence. K-Plus did observe a large pit in the center of the property which had been dug as part of demolition and excavation activities.

2.4 Surrounding Area

The Subject Property was located in a mixed use area. Specifically, the Subject Property was bounded on the **north** by newly constructed residential homes and the Chicago Park District's Harriet M. Harris Park and building; on the **east** by Drexel Avenue, followed by Mobil gas station; on the **west** by S. Cottage Grove Ave., and then by Cosmo – Beauty/Food/Clothes; and on the **south** by E. 63rd St., followed by commercial properties (Figure 2).

Figure 2 – Site and Surrounding Area (Google Earth Aerial 5/2016)

Phase II Subsurface Investigation Report 6253 S. Cottage Grove Avenue Chicago, IL 60637 Cook County

2.5 Topography

In general, the topography of the Subject Property is relatively flat, with mild elevation changes due to demolition, excavation and replacement of soil and an approximately 10-foot deep pit caused by demolition and excavation activities near the center of the Subject Property. According to the United States Geological Survey 7.5 Minute Series Topographic Map of Jackson Park, Illinois Quadrangle (1997), the Subject Property lies at a relative surface elevation of approximately 592 feet above mean sea level. Groundwater is expected to flow in an easterly direction toward Lake Michigan which is located approximately 1.5 miles to the east of the Subject Property (Figure 4).

Figure 3 – Topographic Map

2.6 Site Geology

In order to categorize and assess the geologic conditions encountered at the Subject Property, K-Plus consulted various sources of information including geological maps constructed by the Illinois State Geological Survey. Specific geologic maps used during this investigation include *Potential for Contamination of Shallow Aquifers by Land Burial of Municipal Wastes*; and *Potential for Contamination of Shallow Aquifers by Surface and Near-Surface Waste Disposal* by Berg, Richard C. et al (Berg Map) which were constructed to describe and map geologic materials to a depth of 50 feet throughout the state. In these maps, various geologic materials were differentiated by thickness, texture, permeability, and stratigraphic position in order to rate their relative contamination potential for aquifers in any area of the state.

According to the Berg Map, the regional geologic materials in the area are designated as type as a "B1"-type soil (Figure 5). A "B1" classification is described as sand and gravel, within 20 feet of surface, overlain and underlain by relatively impermeable till, other fine-grained material, and/or bedrock.

Figure 4 – Berg Map

Field observations of borings advanced at the Subject Property during this investigation revealed approximately 6-10 feet of fill followed by 2-5 feet of silt/sand and then sand to a depth of approximately 16 feet below grade level. The field observations were consistent with geological map findings.

August 25, 2016 Project No. 26029

3.0 SITE HISTORY

As part of the Phase I ESA investigation that preceded this SSI, K-Plus reviewed historical records to obtain a better understanding of the historical use of the Subject Property. Historical information gathered during that investigation indicated that the Subject Property was developed prior to 1895 with commercial storefronts. According to historic Sanborn maps, from at least 1926 through 1950 the site contained a dry cleaning operation and 6 USTs containing what was labeled as "benzine" at 822-824 E. 63rd Street. The building containing the former dry cleaner was demolished by 1969 in order for the property to be re-developed with a strip mall and pharmacy/doctor office building. Those buildings were demolished in 2016 and the site left vacant.

K-Plus submitted a FOIA request to the City of Chicago Fire Department concerning any historical information regarding storage tanks and hazardous material usage at the Subject Property. Records from the CFD showed that two permits were issued for a dry cleaners at 820 E. 63rd Street. In 1945 a permit was issued for one 1,000-gallon fuel oil UST. In 1951, a permit was issued for three 1,000-gallon USTs and one 500-gallon UST containing solvents. No further information regarding the permits was available. K-Plus reviewed the Office of the Illinois State Fire Marshal (OSFM) database of registered USTs and the Illinois Environmental Protection Agency (IEPA) database of leaking UST (LUST) sites. The Subject Property was not listed on either of those databases.

4.0 METHODS AND EQUIPMENT

All borings were completed under the direct supervision of a K-Plus inspector who was onsite during all field work to coordinate the drillers, choose appropriate environmental boring locations and sample depths, collect and screen soil samples, and log the geologic characteristics of each borehole. All drilling work was performed in accordance with applicable provisions of the American Society of Testing Materials (ASTM) standards for environmental and geotechnical drilling, which specify the techniques used for sampling and drilling.

4.1 Drilling

All drilling was completed with a Geoprobe drill rig using 2¹/₄-inch inside diameter continuousflight, four foot dual-tube core sampler. The use of the dual-tube core sampler in conjunction with sample liners greatly reduces the chance of cross contamination between samples and provides better sample recovery. The details of each boring were recorded on separate logs by the K-Plus investigator. Each log contains the following information for each boring:

- Lithology description for each change in stratum, and the level of each change;
- relative moisture content of each sample interval;
- length of sample recovery from every four feet of split-barrel sample;
- presence of any water and the level at which it was encountered;
- presence of contamination by field screening; and
- depth of the sample collection.

4.2 Field Screening and Soil Sampling

In accordance with ASTM standards and in order to identify soil contamination, the on-site geologist determined the geologic lithology, and constructed a profile of each soil column from the continuous soil samples which were collected using a 48-inch DT sampler at 4.0 foot intervals. Undisturbed soil samples from each sleeve were visually classified in the field according to the Unified Soil Classification System. The characteristics of each sample such as color, odor, texture, relative moisture, sediment type, or disturbance was immediately recorded in the field log.

All soil samples recovered during the fieldwork were screened for the presence of contamination by visual and olfactory assessment, and evaluation using a photoionization detector (PID). All field screening observations were recorded on the respective boring logs along with the geologic data.

During the fieldwork, all soil samples were immediately placed in sealed bags and sample jars and were labeled to identify the boring location, sample depth, and sample number. The investigator

selected at least one sample from all borings except B8 for submittal to the laboratory. Boring B8 was attempted three times within an approximately radius of 7 feet and met with refusal at approximately 6 feet below grade level (bgl) each time. Therefore, no sample was taken from the fill material encountered. The soil samples taken from other borings were collected at depths corresponding to estimated depths of potential contamination, such as shallow depths for potential surface contamination or deeper depths for contamination that may have been associated with the UST or deeper fill materials.

4.3 Sample Preservation and Laboratory Analysis

4.3.1 Soil

Soil samples were collected from twelve of the thirteen borings conducted at the site. Soil was packed "air tight" and placed into specially prepared glass sample jars equipped with Teflon lined lids. All VOC samples were immediately preserved according to the Method 5035 guidelines. Each sample jar and container was then labeled with a unique sample number to identify the sample's location, boring number, sample depth and date of collection. All samples were immediately preserved in a cooler until receipt by the laboratory for analysis. A total of twenty-one samples were submitted to STAT Analysis Corporation in Chicago, Illinois. The cooler temperature was recorded as 3.2°C on the chain-of-custody and sample receipt checklist found at the end of the laboratory data set. Thirteen samples were initially designated for analysis. The remaining samples were placed on hold in case additional analysis was necessary. One additional sample was analyzed (B9-15-16') following the preliminary soil analysis results provided by STAT. All samples were transferred to the laboratory under strict chain-of-custody procedures for analysis of VOCs and SVOCs according to standard USEPA methodologies. All analytical testing was performed in accordance with the requirements of 35 IAC Part 186 by STAT Analysis Accreditation Number 100445. All samples were analyzed within established holding times, all quality control testing met EPA or laboratory criteria, except where noted in the case narrative or analytical report. No data were qualified by the laboratory. All samples were analyzed for the requested parameters; there is no missing data. Where data was questionable when checked by K-Plus personnel, the laboratory was requested to check the data, and if necessary, re-analyze the sample to ensure that the data were accurate. All data meets quality control criteria and is usable.

4.3.2 Groundwater

K-Plus installed monitoring wells MW1 – MW5 at the site during the field work activities on August 11, 2016. Monitoring wells MW1 – MW5 corresponded to borings B1 – B5 at the site. The monitoring wells were developed following installation and allowed to sit until K-Plus returned to the site on August 16, 2016. After purging the wells, K-Plus collected groundwater samples in three 40mL glass vials for each monitoring well. Groundwater sample jars were cleared of any headspace as best as possible. Each 40 mL vial container was then labeled with a unique sample

number to identify the sample's location, sample number, and time/date of collection. All samples were stored in a plastic cooler that was filled with ice to keep the samples chilled. Samples were transported immediately to STAT Analysis Laboratory (STAT) in Chicago, Illinois following completion of field activities. The cooler temperature was recorded as 3.6°C on the chain-of-custody and sample receipt checklist found at the end of the laboratory data set. All samples were transferred to STAT under strict chain-of-custody procedures for analysis of VOCs according to standard United States Environmental Protection Agency (U.S. EPA) methodologies. All analytical testing was performed in accordance with the requirements of the National Environmental Laboratory Accreditation Program (NELAP). All quality control testing met U.S. EPA or laboratory criteria, except where noted in the case narrative or analytical report. No data were qualified by the laboratory. All samples were analyzed for the requested parameters; there is no missing data. If data was questionable when checked by K-Plus personnel, the laboratory was requested to check the data, and if necessary, re-analyze the sample to ensure that the data were accurate and met quality control criteria.

4.4 Decontamination

In order to ensure that no cross-contamination between samples occurs, all non-dedicated sampling equipment was decontaminated after collection of each sample. Sampling equipment was scrubbed with a brush to remove loose material and then washed thoroughly with a laboratory grade detergent and water to remove all particulate matter and surface film. After washing, each piece was rinsed with clean distilled water. Dedicated sampling equipment such as plastic scoops, spoons and latex gloves were disposed of after the handling of each sample was complete.

5.0 INVESTIGATION FINDINGS

In order to evaluate the subsurface soils, a total of 13 soil borings were advanced to a maximum depth of 16 feet below grade level (bgl) in areas throughout the property where potential contamination may have occurred. Boring B1 was conducted in the center of the Subject Property just south of the location of USTs noted on historical records and evaluated for potential contamination from dry cleaning activities and the USTs. Boring B2 was conducted at the location of the former USTs. Boring B3 was conducted directly north of the location of the USTs and dry cleaners and within 5 feet of the property's northern border. Boring B4 was conducted directly west, approximately 146 feet from the location of the USTs. B5 was conducted directly to the east, approximately 100 feet east of B2 and 13 feet west of the eastern border of the site. Boring B6 was conducted on the far west side of the property, approximately 5 feet west of the eastern border. Boring B7 was conducted in the north-eastern portion of the property between the northeast corner of the property and the former dry cleaners and USTs. Boring B8 was attempted directly east of the site of the location of the USTs between B2 and B5, however it met refusal at 6 feet bgl and two subsequent attempts were also unsuccesssul. Boring B9 was advanced south-east of B1 and B2. Boring B10 was advanced directly south of the location of the USTs, approximately 13 feet north of the site's southern boundary. B11 was advanced in the far south-eastern portion of the Subject Property. B12 was advanced in the north central portion of the property, approximately 51 feet west of B2. B13 was located 51 feet directly south of B12. A map showing boring locations is found in Appendix 1.

5.1 Field Observations

K-Plus observed soil staining present in soil boring B9 from approximately 9 to 12 feet bgl. Additionally, strong petroleum odors were noted during the field observations in borings B1 from 4 to 12 feet bgl, B2 from 8 to 12 feet bgl, B9 from 8 to 16 feet bgl, and B13 from 8 to 12 feet bgl and a slight petroleum odor was also noted in B11. PID readings ranged from 0 to 512 parts per million (ppm). The highest PID readings for each boring are recorded in the table below.

Boring	Depth (feet bgl)	PID (ppm)
B1	9-10'	164.7
B2	13-14'	90
B3	0-4'	4.1
B4	14-16'	44.6
B5	NA	0.0
B6	NA	0.0
B7	NA	0.0

Boring	Depth (feet bgl)	PID (ppm)
B 8	NA	NA
B9	8-12'	300.2
B10	NA	0.0
B11	9-10'	2.4
B12	NA	0.0
B13	8-12'	512.0

No contaminant sheen was noted during groundwater sample collection though a slight petroleum odor was detected from monitoring wells MW1 and MW2.

5.2 Soil Analytical Results

K-Plus collected a total of 21 soil samples at the Subject Property. As noted above, no sample was taken from boring B8 because the GeoProbe met refusal on three separate occasions. A total of 14 soil samples were analyzed at the lab. All samples were analyzed for VOC contaminants and sample B2-8-10' was also analyzed for SVOC contaminants. Sample B1-10' was also analyzed for Tiered Approach to Corrective Action Objectives (TACO) chemical parameters. The TACO parameter analysis was performed in the event that contaminant modeling or other TACO analysis is needed during future evaluation of the site.

To determine whether the detected concentrations of compounds are considered elevated, all results were compared to the most conservative Tier 1 Soil Remediation Objectives (SROs) for residential properties identified in 35 Illinois Administrative Code (IAC) Part 742 – Tiered Approach to Corrective Action Objectives (TACO), Appendix B, Table A.

In general, the SROs outlined in the TACO objectives are subdivided into three primary exposure pathways, including the soil ingestion, soil outdoor inhalation and soil component of the groundwater ingestion exposure route (migration to groundwater). Tables of the soil laboratory analysis results are found in Appendix 2, and laboratory data sheets are found in Appendix 5.

Results from the laboratory testing indicate no contaminant levels above the lab detection limits. However, because of the high PID readings, the lab detection limits were set to detect a high level of contamination to ensure that QC requirements were met. As such, the lab detection limits for vinyl chloride in samples B1-10', B2-8-10', and B9-10-12' were above Tier I Residential SROs for Outdoor Inhalation. Additionally, B1-10', B2-8-10', and B9-10-12' had lab detection limits above SCGIER Class I SROs for various VOCs and SVOCs. Low levels of PNAs in sample B2-8-10' and toluene in sample B11-9-10' were reported above laboratory detection levels but well below SROs.

No contaminant concentrations were reported for analytes above both lab detection limits and SROs.

5.2 Groundwater Analytical Results

K-Plus collected a total of 5 groundwater samples at the Subject Property and submitted them to STAT for VOC analysis. Tables of the groundwater laboratory analysis results are found in Appendix 3, and laboratory data sheets are found in Appendix 6.

To determine whether the detected concentrations of compounds are considered elevated, all results were compared to the most conservative Tier 1, Class I Groundwater Remediation Objectives (GROs) for the groundwater component of the groundwater ingestion exposure route identified in 35 Illinois Administrative Code (IAC) Part 742 – Tiered Approach to Corrective Action Objectives (TACO), Appendix B, Table E.

Results from the laboratory testing indicate no contaminant levels above the lab detection limits, which are well below Tier 1, Class I GROs.

5.3 Indoor Inhalation Evaluation

Based on the List of TACO Volatile Chemicals for the Indoor Inhalation Exposure Route (35 IAC 742.Appendix A, Table J), the presence of COCs at the site found on that list which were found with laboratory detection limits above Tier 1 SROs, and the planned residential use of the property, K-Plus evaluated the indoor inhalation exposure route for the Subject Property. A total of 5 groundwater monitoring wells were installed at the site, including two monitoring wells within or near the foundation footprint of the building and located in the nearest proximity to the suspected source of contamination in the south and west direction, monitoring wells MW1 and MW4. No planned buildings are found north or east of the suspected contaminant source. Laboratory results of the groundwater analysis were compared to the Tier 1 Residential GROs for the indoor inhalation exposure route found in 35 IAC 742.Appendix B, Table H.

No groundwater results were noted above laboratory detection limits, which are well below the Tier 1 Residential GROs of Table H. Tables of the groundwater laboratory analysis results are found in Appendix 4, and laboratory data sheets are found in Appendix 6.

6.0 CONCLUSIONS

This investigation was conducted in order to determine whether the historical use of the site led to subsurface contamination at the Subject Property. K-Plus advanced a total of thirteen borings at the property to depths of up to 16 feet below grade. Soil samples were collected from twelve of the thirteen borings at the Subject Property and 14 of the 21 samples submitted to the laboratory were ultimately analyzed for evidence of contaminants. Samples were primarily analyzed for VOCs and one sample was also analyzed for SVOCs. VOC analysis was conducted to determine if historical drycleaning operations or associated USTs led to soil contamination. SVOC analysis was conducted to determine if the historic USTs at the site may have contained other contaminants that had been released.

Laboratory results of the soil samples indicate that minor VOC contamination exceeding State Outdoor Inhalation and SCGIER SROs is characterized in the eastern-central area of the property near borings B1 and B2 and extending in a south-east direction to B9. Specifically, those borings contained soil at depths of between 8-12 feet which was found to have laboratory detection limits above the State SROs. Although no samples were found with contaminants defined above SROs, the IEPA considers any constituents that have lab detection limits above SROs to be classified as exceeding the objectives. Low levels of contaminants were also found in borings B2 and B11 but did not exceed the remediation objectives for the site. No contaminants above laboratory detection limits or SROs were found in the samples from any of the remaining borings. Based on this investigation, it appears that VOC contaminants cannot be ruled out and are therefore considered present in a roughly circular area surrounding borings B1, B2, and B9, the limits of which are defined by B3, B4, B5, B7, B10, B11, B12, and B13.

Laboratory results of the groundwater samples indicate that no groundwater contaminants are found above the lab detection limits, which are well below Tier 1, Class I GROs.

Laboratory results of the groundwater samples also indicate that no samples were found above the groundwater objectives for indoor inhalation found in 35 IAC 742, Appendix B, Table H. Use of that table for comparison requires that any buildings on the property maintain a concrete slab or foundation. In the event that a concrete slab or foundation is not present or breaches through the concrete are installed, alternative approaches to prevent indoor inhalation must be developed in order to satisfy the State.

APPENDIX 1

BORING LOCATIONS FIGURE

APPENDIX 2

SOIL RESULTS TABLES

Soil Table - VOCs Woodlawn Station

(all results in mg/kg)

				Sample ID :	B1	B2	B2	B3	B4
				Depth:	10'	8-10'	13-14'	9-11'	14-16'
			Soil Con	nponent of					
			Groundwat	ter Ingestion					
	Route Specific	values for Soil	Exposure R	Route Values					
Analyte	Ingestion	Inhalation	Class I	Class II					
Acetone	70,000	100,000	25	25	< 4.4	< 4.3	< 0.088	< 0.085	< 0.081
Benzene	12	0.8	0.03	0.17	< 0.12	< 0.11	< 0.0060	< 0.0058	< 0.0053
Bromodichloromethane	10	3,000	0.6	0.6	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
Bromoform	81	53	0.8	0.8	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
Bromomethane	110	10 / 3.9*	0.2	1.2	< 0.59	< 0.57	< 0.012	< 0.011	< 0.011
2-Butanone					< 4.4	< 4.3	< 0.088	< 0.085	< 0.081
Carbon disulfide	7,800	720 / 9.0*	32	160	< 3.0	< 2.9	< 0.060	< 0.058	< 0.053
Carbon tetrachloride	5	0.3	0.07	0.33	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
Chlorobenzene	1,600	130 / 1.3*	1	6.5	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
Chloroethane					< 0.59	< 0.57	< 0.012	< 0.011	< 0.011
Chloroform	100	0.3	0.6	2.9	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
Chloromethane					< 0.59	< 0.57	< 0.012	< 0.011	< 0.011
Dibromochloromethane	1,600	1,300	0.4	0.4	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
1,1-Dichloroethane	7,800	1,300 / 130*	23	110	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
1,2-Dichloroethane	7	0.4	0.02	0.1	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
1,1-Dichloroethene	3,900	290 / 3.0*	0.06	0.3	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
cis-1,2-Dichloroethene	780	1,200	0.4	1.1	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
trans-1,2-Dichloroethene	1,600	3,100	0.7	3.4	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
1,2-Dichloropropane	9	15 / 0.50*	0.03	0.15	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
cis-1,3-Dichloropropene	6.4	1.1 / 0.39*	0.004	0.02	< 0.12	< 0.11	< 0.0024	< 0.0023	< 0.0021
trans-1,3-Dichloropropene	6.4	1.1 / 0.39*	0.004	0.02	< 0.12	< 0.11	< 0.0024	< 0.0023	< 0.0021
Ethylbenzene	7,800	400 / 58*	13	19	< 0.12	< 0.11	< 0.0060	< 0.0058	< 0.0053
2-Hexanone					< 1.2	< 1.1	< 0.024	< 0.023	< 0.021
4-Methyl-2-pentanone					< 1.2	< 1.1	< 0.024	< 0.023	< 0.021
Methylene chloride	85	13	0.02	0.2	< 0.59	< 0.57	< 0.012	< 0.011	< 0.011
Methyl tert-butyl ether	780	8,800 / 140*	0.32	0.32	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
Styrene	16,000	1,500 / 430*	4	18	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
1,1,2,2-Tetrachloroethane					< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
Tetrachloroethene	12	11	0.06	0.3	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
Toluene	16,000	650 / 42*	12	29	< 0.12	< 0.11	< 0.0060	< 0.0058	< 0.0053
1,1,1-Trichloroethane		1,200	2	9.6	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
1,1,2-Trichloroethane	310	1,800	0.02	0.3	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
Trichloroethene	58	5	0.06	0.3	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
Vinyl chloride	0.46	0.28	0.01	0.07	< 0.30	< 0.29	< 0.0060	< 0.0058	< 0.0053
Xylenes, Total	16,000	320 / 5.6*	150	150	< 0.36	< 0.34	< 0.018	< 0.017	< 0.016

Construction Worker Inhalation Objective from Appendix B, Table B Yellow Shading - Exceedence of Inhalation Objective Blue Shading - Exceedence of SCGIER Objective

Soil Table - VOCs Woodlawn Station

(all results in mg/kg)

				Sample ID :	B5	B6	B7	B9	B9
				Depth:	9-11'	9-11'	8-9'	10-12'	15-16'
			Soil Con	nponent of					
			Groundwa	ter Ingestion					
	Route Specific	Values for Soil	Exposure F	Route Values					
Analyte	Ingestion	Inhalation	Class I	Class II					
Acetone	70,000	100,000	25	25	< 0.082	< 0.088	< 0.089	< 4.4	< 0.11
Benzene	12	0.8	0.03	0.17	< 0.0055	< 0.0059	< 0.0059	< 0.12	< 0.0072
Bromodichloromethane	10	3,000	0.6	0.6	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
Bromoform	81	53	0.8	0.8	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
Bromomethane	110	10 / 3.9*	0.2	1.2	< 0.011	< 0.012	< 0.012	< 0.59	< 0.014
2-Butanone					< 0.082	< 0.088	< 0.089	< 4.4	< 0.11
Carbon disulfide	7,800	720 / 9.0*	32	160	< 0.055	< 0.059	< 0.059	< 3.0	< 0.072
Carbon tetrachloride	5	0.3	0.07	0.33	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
Chlorobenzene	1,600	130 / 1.3*	1	6.5	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
Chloroethane					< 0.011	< 0.012	< 0.012	< 0.59	< 0.014
Chloroform	100	0.3	0.6	2.9	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
Chloromethane					< 0.011	< 0.012	< 0.012	< 0.59	< 0.014
Dibromochloromethane	1,600	1,300	0.4	0.4	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
1,1-Dichloroethane	7,800	1,300 / 130*	23	110	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
1,2-Dichloroethane	7	0.4	0.02	0.1	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
1,1-Dichloroethene	3,900	290 / 3.0*	0.06	0.3	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
cis-1,2-Dichloroethene	780	1,200	0.4	1.1	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
trans-1,2-Dichloroethene	1,600	3,100	0.7	3.4	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
1,2-Dichloropropane	9	15 / 0.50*	0.03	0.15	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
cis-1,3-Dichloropropene	6.4	1.1 / 0.39*	0.004	0.02	< 0.0022	< 0.0023	< 0.0024	< 0.12	< 0.0029
trans-1,3-Dichloropropene	6.4	1.1 / 0.39*	0.004	0.02	< 0.0022	< 0.0023	< 0.0024	< 0.12	< 0.0029
Ethylbenzene	7,800	400 / 58*	13	19	< 0.0055	< 0.0059	< 0.0059	< 0.12	< 0.0072
2-Hexanone					< 0.022	< 0.023	< 0.024	< 1.2	< 0.029
4-Methyl-2-pentanone					< 0.022	< 0.023	< 0.024	< 1.2	< 0.029
Methylene chloride	85	13	0.02	0.2	< 0.011	< 0.012	< 0.012	< 0.59	< 0.014
Methyl tert-butyl ether	780	8,800 / 140*	0.32	0.32	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
Styrene	16,000	1,500 / 430*	4	18	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
1,1,2,2-Tetrachloroethane					< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
Tetrachloroethene	12	11	0.06	0.3	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
Toluene	16,000	650 / 42*	12	29	< 0.0055	< 0.0059	< 0.0059	< 0.12	< 0.0072
1,1,1-Trichloroethane		1,200	2	9.6	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
1,1,2-Trichloroethane	310	1,800	0.02	0.3	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
Trichloroethene	58	5	0.06	0.3	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
Vinyl chloride	0.46	0.28	0.01	0.07	< 0.0055	< 0.0059	< 0.0059	< 0.30	< 0.0072
Xylenes, Total	16,000	320 / 5.6*	150	150	< 0.016	< 0.017	< 0.018	< 0.35	< 0.022

Soil Table - VOCs Woodlawn Station

(all results in mg/kg)

				Sample ID :	B10	B11	B12	B13
				Depth:	8-10'	9-10'	10-12'	10-12'
			Soil Con	nponent of				
			Groundwat	ter Ingestion				
	Route Specific	values for Soil	Exposure F	Exposure Route Values				
Analyte	Ingestion	Inhalation	Class I	Class II				
Acetone	70,000	100,000	25	25	< 0.078	< 0.078	< 0.074	< 3.7
Benzene	12	0.8	0.03	0.17	< 0.0052	< 0.0052	< 0.0049	< 0.098
Bromodichloromethane	10	3,000	0.6	0.6	< 0.0052	< 0.0052	< 0.0049	< 0.25
Bromoform	81	53	0.8	0.8	< 0.0052	< 0.0052	< 0.0049	< 0.25
Bromomethane	110	10/3.9*	0.2	1.2	< 0.010	< 0.010	< 0.0098	< 0.49
2-Butanone					< 0.078	< 0.078	< 0.074	< 3.7
Carbon disulfide	7,800	720 / 9.0*	32	160	< 0.052	< 0.052	< 0.049	< 2.5
Carbon tetrachloride	5	0.3	0.07	0.33	< 0.0052	< 0.0052	< 0.0049	< 0.25
Chlorobenzene	1,600	130 / 1.3*	1	6.5	< 0.0052	< 0.0052	< 0.0049	< 0.25
Chloroethane					< 0.010	< 0.010	< 0.0098	< 0.49
Chloroform	100	0.3	0.6	2.9	< 0.0052	< 0.0052	< 0.0049	< 0.25
Chloromethane					< 0.010	< 0.010	< 0.0098	< 0.49
Dibromochloromethane	1,600	1,300	0.4	0.4	< 0.0052	< 0.0052	< 0.0049	< 0.25
1,1-Dichloroethane	7,800	1,300 / 130*	23	110	< 0.0052	< 0.0052	< 0.0049	< 0.25
1,2-Dichloroethane	7	0.4	0.02	0.1	< 0.0052	< 0.0052	< 0.0049	< 0.25
1,1-Dichloroethene	3,900	290 / 3.0*	0.06	0.3	< 0.0052	< 0.0052	< 0.0049	< 0.25
cis-1,2-Dichloroethene	780	1,200	0.4	1.1	< 0.0052	< 0.0052	< 0.0049	< 0.25
trans-1,2-Dichloroethene	1,600	3,100	0.7	3.4	< 0.0052	< 0.0052	< 0.0049	< 0.25
1,2-Dichloropropane	9	15 / 0.50*	0.03	0.15	< 0.0052	< 0.0052	< 0.0049	< 0.25
cis-1,3-Dichloropropene	6.4	1.1 / 0.39*	0.004	0.02	< 0.0021	< 0.0020	< 0.0020	< 0.098
trans-1,3-Dichloropropene	6.4	1.1 / 0.39*	0.004	0.02	< 0.0021	< 0.0020	< 0.0020	< 0.098
Ethylbenzene	7,800	400 / 58*	13	19	< 0.0052	< 0.0052	< 0.0049	< 0.098
2-Hexanone					< 0.021	< 0.020	< 0.020	< 0.98
4-Methyl-2-pentanone					< 0.021	< 0.020	< 0.020	< 0.98
Methylene chloride	85	13	0.02	0.2	< 0.010	< 0.010	< 0.0098	< 0.49
Methyl tert-butyl ether	780	8,800 / 140*	0.32	0.32	< 0.0052	< 0.0052	< 0.0049	< 0.25
Styrene	16,000	1,500 / 430*	4	18	< 0.0052	< 0.0052	< 0.0049	< 0.25
1,1,2,2-Tetrachloroethane					< 0.0052	< 0.0052	< 0.0049	< 0.25
Tetrachloroethene	12	11	0.06	0.3	< 0.0052	< 0.0052	< 0.0049	< 0.25
Toluene	16,000	650 / 42*	12	29	< 0.0052	0.0054	< 0.0049	< 0.098
1,1,1-Trichloroethane		1,200	2	9.6	< 0.0052	< 0.0052	< 0.0049	< 0.25
1,1,2-Trichloroethane	310	1,800	0.02	0.3	< 0.0052	< 0.0052	< 0.0049	< 0.25
Trichloroethene	58	5	0.06	0.3	< 0.0052	< 0.0052	< 0.0049	< 0.25
Vinyl chloride	0.46	0.28	0.01	0.07	< 0.0052	< 0.0052	< 0.0049	< 0.25
Xylenes, Total	16,000	320 / 5.6*	150	150	< 0.016	< 0.016	< 0.015	< 0.30

Construction Worker Inhalation Objective from Appendix B, Table B Yellow Shading - Exceedence of Inhalation Objective Blue Shading - Exceedence of SCGIER Objective

Soil Table - SVOCs Woodlawn Station

(all results in mg/kg)

				Sample ID :	B2
				Depth:	8-10'
			Soil Com	ponent of	
			Groundwat	er Ingestion	
	Route Specific	values for Soil	Exposure R	oute Values	
Analyte	Ingestion	Inhalation	Class I	Class II	
Aniline	8				< 0.37
Benzidine					< 0.37
Benzoic acid	310,000		400	400	< 0.92
Benzyl alcohol	,				< 0.19
Bis(2-chloroethoxy)methane					< 0.19
Bis(2-chloroethyl)ether	0.6	0.2	0.0004	0.0004	< 0.19
Bis(2-ethylhexyl)phthalate	46	31,000	3,600	31,000	< 0.92
4-Bromophenyl phenyl ether					< 0.19
Butyl benzyl phthalate	16,000	930	930	930	< 0.19
Carbazole	32		0.6	2.8	< 0.19
4-Chloroaniline	310		0.7	0.7	< 0.19
4-Chloro-3-methylphenol					< 0.37
2-Chloronaphthalene					< 0.19
2-Chlorophenol	390	53,000	4	4	< 0.19
4-Chlorophenyl phenyl ether					< 0.19
Dibenzofuran					< 0.19
1,2-Dichlorobenzene	7,000	560/310*	17	43	< 0.19
1,3-Dichlorobenzene					< 0.19
1,4-Dichlorobenzene		11,000 / 340*	2	11	< 0.19
3,3'-Dichlorobenzidine	1		0.007	0.033	< 0.19
2,4-Dichlorophenol	230		1	1	< 0.19
Diethyl phthalate	63,000	2,000	470	470	< 0.19
2,4-Dimethylphenol	1,600		9	9	< 0.19
Dimethyl phthalate					< 0.19
4,6-Dinitro-2-methylphenol					< 0.37
2,4-Dinitrophenol	160		0.2	0.2	< 0.92
2,4-Dinitrotoluene	0.9		0.0008	0.0008	< 0.037
2,6-Dinitrotoluene	0.9		0.0007	0.0007	< 0.037
Di-n-butyl phthalate	7,800	2,300	2,300	2,300	< 0.19
Di-n-octyl phthalate	1,600	10,000	10,000	10,000	< 0.19
Hexachlorobenzene	0.4	1	2	11	< 0.19
Hexachlorobutadiene					< 0.19
Hexachlorocyclopentadiene	550	10 / 1.1*	400	2,200	< 0.19
Hexachloroethane	78		0.5	2.6	< 0.19
Isophorone	15,600	4,600	8	8	< 0.19
2-Methylnaphthalene					< 0.19
2-Methylphenol	3,900		15	15	< 0.19
4-Methylphenol					< 0.19
2-Nitroaniline					< 0.19
3-Nitroaniline					< 0.19
4-Nitroaniline					< 0.19
2-Nitrophenol					< 0.19
4-Nitrophenol					< 0.37
Nitrobenzene	39	92/9.4*	0.1	0.1	< 0.037
N-Nitrosodi-n-propylamine	0.09		0.00005	0.00005	< 0.037
N-Nitrosodimethylamine					< 0.19

* - Construction Worker Inhalation Objective from Appendix B, Table B Blue Shading - Indicates exceedence of SCGIER Objective

Soil Table - SVOCs

Woodlawn Station (all results in mg/kg)

				Sample ID :	B2
				Depth:	8-10'
			Soil Com	ponent of	
			Groundwat	er Ingestion	
	Route Specific	Values for Soil	Exposure R	oute Values	
Analyte	Ingestion	Inhalation	Class I	Class II	
N-Nitrosodiphenylamine	130		1	5.6	< 0.19
2, 2'-oxybis(1-Chloropropane)					< 0.19
Pentachlorophenol	3		0.03	0.14	< 0.074
Phenol	23,000		100	100	< 0.19
Pyridine					< 0.74
1,2,4-Trichlorobenzene	780	3,200 / 920*	5	53	< 0.19
2,4,5-Trichlorophenol	7,800		270	1,400	< 0.19
2,4,6-Trichlorophenol	58	200	0.2	0.77	< 0.19

Soil Table - PNAs Woodlawn Station (all results in mg/kg)

				Sample ID :	B2
				Depth:	8-10'
			Soil Com	ponent of	
			Groundwate	er Ingestion	
	Route Specific	Values for Soil	Exposure Re	oute Values	
Analyte	Ingestion	Inhalation	Class I	Class II	
Acenaphthene	4,700		570	2,900	< 0.037
Acenaphthylene					< 0.037
Anthracene	23,000		12,000	59,000	< 0.037
Benz(a)anthracene	0.9		2	8	< 0.037
Benzo(a)pyrene	0.09		8	82	< 0.037
Benzo(b)fluoranthene	0.9		5	25	< 0.037
Benzo(g,h,i)perylene					< 0.037
Benzo(k)fluoranthene	9		49	250	< 0.037
Chrysene	88		160	800	0.044
Dibenz(a,h)anthracene	0.09		2	7.6	< 0.037
Fluoranthene	3,100		4,300	21,000	0.079
Fluorene	3,100		560	2,800	< 0.037
Indeno(1,2,3-cd)pyrene	0.9		14	69	< 0.037
Naphthalene	1,600	170 / 1.8*	12	18	< 0.037
Phenanthrene					0.077
Pyrene	2,300		4,200	21,000	0.078

APPENDIX 3

GROUNDWATER RESULTS TABLE

Groundwater Table - VOCs

Woodlawn Station (all results in mg/kg)

	Ionitoring W	ell Sample :	MW1	MW2	MW3	MW4	MW5
	De	pth to GW :	08/16/2016 10:4:	08/16/2016 11:1:	08/16/2016 11:45	08/16/2016 12:00	08/16/2016 12:5
	Groun	dwater					
	Remediatio	n Objective					
Analyte	Class I	Class II					
Acetone	6.3	6.3	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Benzene	0.005	0.025	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Bromodichloromethane	0.0002	0.0002	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Bromoform	0.001	0.001	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Bromomethane	0.0098	0.049	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
2-Butanone			< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Carbon disulfide	0.7	3.5	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Carbon tetrachloride	0.005	0.025	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chlorobenzene	0.1	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chloroethane			< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Chloroform	0.0002	0.001	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chloromethane			< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Dibromochloromethane	0.14	0.14	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,1-Dichloroethane	0.7	3.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,2-Dichloroethane	0.005	0.025	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,1-Dichloroethene	0.007	0.035	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
cis-1,2-Dichloroethene	0.07	0.2	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
trans-1,2-Dichloroethene	0.1	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,2-Dichloropropane	0.005	0.025	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
cis-1,3-Dichloropropene	0.001	0.005	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
trans-1,3-Dichloropropene	0.001	0.005	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Ethylbenzene	0.7	1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
2-Hexanone			< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
4-Methyl-2-pentanone			< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Methylene chloride	0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Methyl tert-butyl ether	0.07	0.07	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Styrene	0.1	0.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,1,2,2-Tetrachloroethane			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Tetrachloroethene	0.005	0.025	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Toluene	1.0	2.5	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,1,1-Trichloroethane	0.2	1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,1,2-Trichloroethane	0.005	0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Trichloroethene	0.005	0.025	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Vinyl chloride	0.002	0.01	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Xylenes, Total	10.0	10.0	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015

APPENDIX 4

INDOOR INHALATION RESULTS TABLE

6253 S. Cottage Grove Ave. Chicago, Illinois

Groundwater Table - Indoor Inhalation

Woodlawn Station (all results in mg/L)

	Sample ID :		MW1	MW2	MW3	MW4	MW5
	GW Elevation :		92.14	92.09	92.38	90.70	93.61
	Indoor Inhalation Route -						
	Tier 1 Groundwater						
	Diffusion at	Industrial /					
Analyta	Posidontial	Commorcial					
Acatona	1 000 000		< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Bonzono	1,000,000	1,000,000	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Dromodiabloromothene	6.700	0.41 6 700	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Bromodicilioroinethane	0,700	0,700	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Bromotorm	3.1	12	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
2-Butanone	10,000	48,000	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Carbon disulfide	6/	210	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Carbon tetrachloride	0.020	0.076	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chlorobenzene	26	82	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Dibromochloromethane	2,600	2,600	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Chloroform	0.07	0.15	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,1-Dichloroethane	180	580	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,2-Dichloroethane	0.054	0.22	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,1-Dichloroethene	24	74	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
cis-1,2-Dichloroethene	3,500	3,500	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
trans-1,2-Dichloroethene	16	51	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,2-Dichloropropane	0.12	0.48	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
cis-1,3-Dichloropropene	0.14	0.52	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
trans-1,3-Dichloropropene	0.14	0.52	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Ethylbenzene	0.37	1.4	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Bromomethane	1.5	4.8	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Methyl tert-butyl ether	1,900	6,800	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Methylene chloride	2.1	8.2	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Styrene	310	310	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Tetrachloroethene	0.091	0.34	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Toluene	530	530	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,1,1-Trichloroethane	1,000	1,300	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
1,1,2-Trichloroethane	4,400	4,400	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Trichloroethene	0.34	1.3	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Vinyl chloride	0.028	0.21	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Xylenes, Total	30	93	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015

APPENDIX 5

LABORATORY DATA SHEETS - SOIL

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

August 18, 2016

K-Plus Engineering, LLC 15 Spinning Wheel Drive Hinsdale, IL 60521

Telephone: (312) 207-1600 Fax: (312) 831-2191

Analytical Report for STAT Work Order: 16080494 Revision 0

RE: 26029, Woodlawn Station, 822 E 63rd, Chicago, IL

Dear Aaron Colin:

STAT Analysis received 21 samples for the referenced project on 8/11/2016 3:20:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

mm for home Frank Capoccia

Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

STAT Analysis Corporation

Client:	K-Plus Engineering, LLC	
Project:	26029, Woodlawn Station, 822 E 63rd, Chicago, IL	Work Order Sample Summary
Work Order:	16080494 Revision 0	

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
16080494-001A	AB1-10'		8/11/2016 8:15:00 AM	8/11/2016
16080494-001B	B1-10'		8/11/2016 8:15:00 AM	8/11/2016
16080494-002A	AB1-13'		8/11/2016 8:15:00 AM	8/11/2016
16080494-003A	AB2-8-10'		8/11/2016 8:45:00 AM	8/11/2016
16080494-003B	B2-8-10'		8/11/2016 8:45:00 AM	8/11/2016
16080494-004A	AB2-13-14'		8/11/2016 8:45:00 AM	8/11/2016
16080494-004B	B2-13-14'		8/11/2016 8:45:00 AM	8/11/2016
16080494-005A	AB3-0-4'		8/11/2016 9:00:00 AM	8/11/2016
16080494-005B	B3-0-4'		8/11/2016 9:00:00 AM	8/11/2016
16080494-006A	AB3-9-11'		8/11/2016 9:00:00 AM	8/11/2016
16080494-006B	B3-9-11'		8/11/2016 9:00:00 AM	8/11/2016
16080494-007A	AB4-10-11		8/11/2016 9:20:00 AM	8/11/2016
16080494-007B	B4-10-11		8/11/2016 9:20:00 AM	8/11/2016
16080494-008A	AB4-14-16'		8/11/2016 9:20:00 AM	8/11/2016
16080494-008B	B4-14-16'		8/11/2016 9:20:00 AM	8/11/2016
16080494-009A	AB5-9-11		8/11/2016 9:45:00 AM	8/11/2016
16080494-009B	B5-9-11		8/11/2016 9:45:00 AM	8/11/2016
16080494-010A	B6-9-11		8/11/2016 10:30:00 AM	8/11/2016
16080494-010B	B6-9-11		8/11/2016 10:30:00 AM	8/11/2016
16080494-011A	B6-P-9-11		8/11/2016 10:30:00 AM	8/11/2016
16080494-012A	B7-8-9		8/11/2016 10:50:00 AM	8/11/2016
16080494-012B	B7-8-9		8/11/2016 10:50:00 AM	8/11/2016
16080494-013A	B9-10-12		8/11/2016 11:30:00 AM	8/11/2016
16080494-013B	B9-10-12		8/11/2016 11:30:00 AM	8/11/2016
16080494-014A	AB9-15-16		8/11/2016 11:30:00 AM	8/11/2016
16080494-014B	B9-15-16		8/11/2016 11:30:00 AM	8/11/2016
16080494-015A	AB10-8-10		8/11/2016 12:00:00 PM	8/11/2016
16080494-015B	B10-8-10		8/11/2016 12:00:00 PM	8/11/2016
16080494-016A	B10-11-12		8/11/2016 12:00:00 PM	8/11/2016
16080494-016B	B10-11-12		8/11/2016 12:00:00 PM	8/11/2016
16080494-017A	B11-9-10		8/11/2016 12:20:00 PM	8/11/2016
16080494-017B	B11-9-10		8/11/2016 12:20:00 PM	8/11/2016
16080494-018A	B11-15-16		8/11/2016 12:20:00 PM	8/11/2016
16080494-018B	B11-15-16		8/11/2016 12:20:00 PM	8/11/2016
16080494-019A	B12-10-12		8/11/2016 12:45:00 PM	8/11/2016
16080494-019B	B12-10-12		8/11/2016 12:45:00 PM	8/11/2016
16080494-020A	B13-10-12'		8/11/2016 1:15:00 PM	8/11/2016
16080494-020B	B13-10-12'		8/11/2016 1:15:00 PM	8/11/2016

Client:	K-Plus Engineering, LLC	
Project:	26029, Woodlawn Station, 822 E 63rd, Chicago, IL	Work Order Sample Summary
Work Order:	16080494 Revision 0	

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
16080494-021A	B13-15-16'		8/11/2016 1:15:00 PM	8/11/2016
16080494-021B	B13-15-16'		8/11/2016 1:15:00 PM	8/11/2016

STAT Analysis Corporation

CLIENT:	K-Plus Engineering, LLC	
Project:	26029, Woodlawn Station, 822 E 63rd, Chicago, IL	CASE NARRATIVE
Work Order:	16080494 Revision 0	

Due to matrix interference, VOC results for the following samples are reported from a 1:50 dilution (Methanol vial). B1-10' (16080494-001) B2-8-10' (16080494-003) B9-10-12 (16080494-013) B13-10-12' (16080494-020)

The Reactive Cyanide Matrix Spike/Matrix Spike Duplicate (MS/MSD) prepared from sample B1-10' (16080494-001) had recovery outside control limits (22%/32% (MS/MSD) recovery, QC limits 50-150%). The sample and associated QC samples were re-distilled and analyzed. Recoveries were still outside of control limits in the re-distillation and analysis (47.7%/35.7% (MS/MSD) recovery, QC limits 50-150%). Results are reported from the re-distillation.

STAT Analysis Corporation

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported:August 18, 2016Date Printed:August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Lab ID:	16080494-001						
Project:	26029, Woodlawn Station,	822 E 63rd,	Chicago,	IL	Matrix	: Soil	
Work Order:	16080494 Revision 0			Collec	tion Dat	e: 8/11/2	016 8:15:00 AM
Client:	K-Plus Engineering, LLC			Client S	Client Sample ID: B1-10'		

Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep I	Analyst: ART	
Acetone	ND	4.4	mg/Kg-dry	50	8/12/2016
Benzene	ND	0.12	mg/Kg-dry	50	8/12/2016
Bromodichloromethane	ND	0.30	mg/Kg-dry	50	8/12/2016
Bromoform	ND	0.30	mg/Kg-dry	50	8/12/2016
Bromomethane	ND	0.59	mg/Kg-dry	50	8/12/2016
2-Butanone	ND	4.4	mg/Kg-dry	50	8/12/2016
Carbon disulfide	ND	3.0	mg/Kg-dry	50	8/12/2016
Carbon tetrachloride	ND	0.30	mg/Kg-dry	50	8/12/2016
Chlorobenzene	ND	0.30	mg/Kg-dry	50	8/12/2016
Chloroethane	ND	0.59	mg/Kg-dry	50	8/12/2016
Chloroform	ND	0.30	mg/Kg-dry	50	8/12/2016
Chloromethane	ND	0.59	mg/Kg-dry	50	8/12/2016
Dibromochloromethane	ND	0.30	mg/Kg-dry	50	8/12/2016
1,1-Dichloroethane	ND	0.30	mg/Kg-dry	50	8/12/2016
1,2-Dichloroethane	ND	0.30	mg/Kg-dry	50	8/12/2016
1,1-Dichloroethene	ND	0.30	mg/Kg-dry	50	8/12/2016
cis-1,2-Dichloroethene	ND	0.30	mg/Kg-dry	50	8/12/2016
trans-1,2-Dichloroethene	ND	0.30	mg/Kg-dry	50	8/12/2016
1,2-Dichloropropane	ND	0.30	mg/Kg-dry	50	8/12/2016
cis-1,3-Dichloropropene	ND	0.12	mg/Kg-dry	50	8/12/2016
trans-1,3-Dichloropropene	ND	0.12	mg/Kg-dry	50	8/12/2016
Ethylbenzene	ND	0.12	mg/Kg-dry	50	8/12/2016
2-Hexanone	ND	1.2	mg/Kg-dry	50	8/12/2016
4-Methyl-2-pentanone	ND	1.2	mg/Kg-dry	50	8/12/2016
Methylene chloride	ND	0.59	mg/Kg-dry	50	8/12/2016
Methyl tert-butyl ether	ND	0.30	mg/Kg-dry	50	8/12/2016
Styrene	ND	0.30	mg/Kg-dry	50	8/12/2016
1,1,2,2-Tetrachloroethane	ND	0.30	mg/Kg-dry	50	8/12/2016
Tetrachloroethene	ND	0.30	mg/Kg-dry	50	8/12/2016
Toluene	ND	0.12	mg/Kg-dry	50	8/12/2016
1,1,1-Trichloroethane	ND	0.30	mg/Kg-dry	50	8/12/2016
1,1,2-Trichloroethane	ND	0.30	mg/Kg-dry	50	8/12/2016
Trichloroethene	ND	0.30	mg/Kg-dry	50	8/12/2016
Vinyl chloride	ND	0.30	mg/Kg-dry	50	8/12/2016
Xylenes, Total	ND	0.36	mg/Kg-dry	50	8/12/2016
Cyanide, Reactive	SW7.3	3.3.2	Prep I	Date: 8/16/2016	Analyst: MD
Reactive Cyanide	ND	1.0	mg/Kg	1	8/16/2016

ND - Not Detected at the Reporting Limit

Qualifiers:

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded
2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported:August 18, 2016Date Printed:August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Lab ID:	16080494-001					, Son	
Project:	26029, Woodlawn Station,	822 E 63rd,	Chicago,	IL	Matrix	: Soil	
Work Order:	16080494 Revision 0			Colle	ction Dat	e: 8/11/2	2016 8:15:00 AM
Client:	K-Plus Engineering, LLC			Client S	ample II): B1-10)'

Sulfide, Reactive	SW7.3.4.2			Prep Date: 8/12/2016	Analyst: MD
Reactive Sulfide	ND	10		mg/Kg 1	8/12/2016
рН (25 °С)	SW9045C			Prep Date: 8/12/2016	Analyst: PBG
рН	8.6			pH Units 1	8/12/2016
Percent Moisture	D2974			Prep Date: 8/11/2016	Analyst: GH
Percent Moisture	14.2	0.2	*	wt% 1	8/12/2016

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quanititation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported:August 18, 2016Date Printed:August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Lab ID:	16080494-003					. 2011	
Project:	26029, Woodlawn Station,	, 822 E 63rd,	Chicago,	IL	Matrix	: Soil	
Work Order:	16080494 Revision 0			Collec	tion Dat	e: 8/11/20	016 8:45:00 AM
Client:	K-Plus Engineering, LLC			Client S	ample ID	: B2-8-1	0'

Acetone			i i cp	Analyst: ART	
	ND	4.3	mg/Kg-dry	50	8/12/2016
Benzene	ND	0.11	mg/Kg-dry	50	8/12/2016
Bromodichloromethane	ND	0.29	mg/Kg-dry	50	8/12/2016
Bromoform	ND	0.29	mg/Kg-dry	50	8/12/2016
Bromomethane	ND	0.57	mg/Kg-dry	50	8/12/2016
2-Butanone	ND	4.3	mg/Kg-dry	50	8/12/2016
Carbon disulfide	ND	2.9	mg/Kg-dry	50	8/12/2016
Carbon tetrachloride	ND	0.29	mg/Kg-dry	50	8/12/2016
Chlorobenzene	ND	0.29	mg/Kg-dry	50	8/12/2016
Chloroethane	ND	0.57	mg/Kg-dry	50	8/12/2016
Chloroform	ND	0.29	mg/Kg-dry	50	8/12/2016
Chloromethane	ND	0.57	mg/Kg-dry	50	8/12/2016
Dibromochloromethane	ND	0.29	mg/Kg-dry	50	8/12/2016
1,1-Dichloroethane	ND	0.29	mg/Kg-dry	50	8/12/2016
1,2-Dichloroethane	ND	0.29	mg/Kg-dry	50	8/12/2016
1,1-Dichloroethene	ND	0.29	mg/Kg-dry	50	8/12/2016
cis-1,2-Dichloroethene	ND	0.29	mg/Kg-dry	50	8/12/2016
trans-1,2-Dichloroethene	ND	0.29	mg/Kg-dry	50	8/12/2016
1,2-Dichloropropane	ND	0.29	mg/Kg-dry	50	8/12/2016
cis-1,3-Dichloropropene	ND	0.11	mg/Kg-dry	50	8/12/2016
trans-1,3-Dichloropropene	ND	0.11	mg/Kg-dry	50	8/12/2016
Ethylbenzene	ND	0.11	mg/Kg-dry	50	8/12/2016
2-Hexanone	ND	1.1	mg/Kg-dry	50	8/12/2016
4-Methyl-2-pentanone	ND	1.1	mg/Kg-dry	50	8/12/2016
Methylene chloride	ND	0.57	mg/Kg-dry	50	8/12/2016
Methyl tert-butyl ether	ND	0.29	mg/Kg-dry	50	8/12/2016
Styrene	ND	0.29	mg/Kg-dry	50	8/12/2016
1,1,2,2-Tetrachloroethane	ND	0.29	mg/Kg-dry	50	8/12/2016
Tetrachloroethene	ND	0.29	mg/Kg-dry	50	8/12/2016
Toluene	ND	0.11	mg/Kg-dry	50	8/12/2016
1,1,1-Trichloroethane	ND	0.29	mg/Kg-dry	50	8/12/2016
1,1,2-Trichloroethane	ND	0.29	mg/Kg-dry	50	8/12/2016
Trichloroethene	ND	0.29	mg/Kg-dry	50	8/12/2016
Vinyl chloride	ND	0.29	mg/Kg-dry	50	8/12/2016
Xylenes, Total	ND	0.34	mg/Kg-dry	50	8/12/2016
Semivolatile Organic Compounds by GC/MS	SW82	270C (SW3550B)	Prep	Date: 8/11/2016	Analyst: DM
Acenaphthene	ND	0.037	mg/Kg-dry	1	8/12/2016
Acenaphthylene	ND	0.037	mg/Kg-dry	1	8/12/2016

 Qualifiers:
 J - Not Detected at the Reporting Limit

 Qualifiers:
 J - Analyte detected below quanititation limits

 B - Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 18, 2016 **Date Printed:** August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Lab ID:	16080494-003						
Project:	26029, Woodlawn Station,	822 E 63rd,	Chicago,	IL	Matrix	c: Soil	
Work Order:	16080494 Revision 0			Collec	tion Dat	e: 8/11/20) 16 8:45:00 AM
Client:	K-Plus Engineering, LLC			Client S	ample II): B2-8-1	0'

Semivolatile Organic Compounds by GC/MS	SW82	SW8270C (SW3550B)		Prep Date: 8/11/2016			
Aniline	ND	0.37	mg/Kg-dry	1	8/12/2016		
Anthracene	ND	0.037	mg/Kg-dry	1	8/12/2016		
Benz(a)anthracene	ND	0.037	mg/Kg-dry	1	8/12/2016		
Benzidine	ND	0.37	mg/Kg-dry	1	8/12/2016		
Benzo(a)pyrene	ND	0.037	mg/Kg-dry	1	8/12/2016		
Benzo(b)fluoranthene	ND	0.037	mg/Kg-dry	1	8/12/2016		
Benzo(g,h,i)perylene	ND	0.037	mg/Kg-dry	1	8/12/2016		
Benzo(k)fluoranthene	ND	0.037	mg/Kg-dry	1	8/12/2016		
Benzoic acid	ND	0.92	mg/Kg-dry	1	8/12/2016		
Benzyl alcohol	ND	0.19	mg/Kg-dry	1	8/12/2016		
Bis(2-chloroethoxy)methane	ND	0.19	mg/Kg-dry	1	8/12/2016		
Bis(2-chloroethyl)ether	ND	0.19	mg/Kg-dry	1	8/12/2016		
Bis(2-ethylhexyl)phthalate	ND	0.92	mg/Kg-dry	1	8/12/2016		
4-Bromophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	8/12/2016		
Butyl benzyl phthalate	ND	0.19	mg/Kg-dry	1	8/12/2016		
Carbazole	ND	0.19	mg/Kg-dry	1	8/12/2016		
4-Chloroaniline	ND	0.19	mg/Kg-dry	1	8/12/2016		
4-Chloro-3-methylphenol	ND	0.37	mg/Kg-dry	1	8/12/2016		
2-Chloronaphthalene	ND	0.19	mg/Kg-dry	1	8/12/2016		
2-Chlorophenol	ND	0.19	mg/Kg-dry	1	8/12/2016		
4-Chlorophenyl phenyl ether	ND	0.19	mg/Kg-dry	1	8/12/2016		
Chrysene	0.044	0.037	mg/Kg-dry	1	8/12/2016		
Dibenz(a,h)anthracene	ND	0.037	mg/Kg-dry	1	8/12/2016		
Dibenzofuran	ND	0.19	mg/Kg-dry	1	8/12/2016		
1,2-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	8/12/2016		
1,3-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	8/12/2016		
1,4-Dichlorobenzene	ND	0.19	mg/Kg-dry	1	8/12/2016		
3,3´-Dichlorobenzidine	ND	0.19	mg/Kg-dry	1	8/12/2016		
2,4-Dichlorophenol	ND	0.19	mg/Kg-dry	1	8/12/2016		
Diethyl phthalate	ND	0.19	mg/Kg-dry	1	8/12/2016		
2,4-Dimethylphenol	ND	0.19	mg/Kg-dry	1	8/12/2016		
Dimethyl phthalate	ND	0.19	mg/Kg-dry	1	8/12/2016		
4,6-Dinitro-2-methylphenol	ND	0.37	mg/Kg-dry	1	8/12/2016		
2,4-Dinitrophenol	ND	0.92	mg/Kg-dry	1	8/12/2016		
2,4-Dinitrotoluene	ND	0.037	mg/Kg-dry	1	8/12/2016		
2,6-Dinitrotoluene	ND	0.037	mg/Kg-dry	1	8/12/2016		
Di-n-butyl phthalate	ND	0.19	mg/Kg-dry	1	8/12/2016		
Di-n-octyl phthalate	ND	0.19	mg/Kg-dry	1	8/12/2016		

ND - Not Detected at the Reporting Limit

Qualifiers:

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported:August 18, 2016Date Printed:August 18, 2016

ANALYTICAL RESULTS

Analyses	Result	RL Q	ualifier Units	DF	Date Analyzed
Lab ID:	16080494-003			2011	
Project:	26029, Woodlawn Station, 822 E 63	3rd, Chicago, IL	Matrix:	Soil	
Work Order:	16080494 Revision 0		Collection Date:	8/11/201	16 8:45:00 AM
Client:	K-Plus Engineering, LLC		Client Sample ID:	B2-8-10	,

Semivolatile Organic Compounds by GC/MS	SW8	270C (SW3550B)	Prep	Analyst: DM	
Fluoranthene	0.079	0.037	mg/Kg-dry	1	8/12/2016
Fluorene	ND	0.037	mg/Kg-dry	1	8/12/2016
Hexachlorobenzene	ND	0.19	mg/Kg-dry	1	8/12/2016
Hexachlorobutadiene	ND	0.19	mg/Kg-dry	1	8/12/2016
Hexachlorocyclopentadiene	ND	0.19	mg/Kg-dry	1	8/12/2016
Hexachloroethane	ND	0.19	mg/Kg-dry	1	8/12/2016
Indeno(1,2,3-cd)pyrene	ND	0.037	mg/Kg-dry	1	8/12/2016
Isophorone	ND	0.19	mg/Kg-dry	1	8/12/2016
2-Methylnaphthalene	ND	0.19	mg/Kg-dry	1	8/12/2016
2-Methylphenol	ND	0.19	mg/Kg-dry	1	8/12/2016
4-Methylphenol	ND	0.19	mg/Kg-dry	1	8/12/2016
Naphthalene	ND	0.037	mg/Kg-dry	1	8/12/2016
2-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/12/2016
3-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/12/2016
4-Nitroaniline	ND	0.19	mg/Kg-dry	1	8/12/2016
2-Nitrophenol	ND	0.19	mg/Kg-dry	1	8/12/2016
4-Nitrophenol	ND	0.37	mg/Kg-dry	1	8/12/2016
Nitrobenzene	ND	0.037	mg/Kg-dry	1	8/12/2016
N-Nitrosodi-n-propylamine	ND	0.037	mg/Kg-dry	1	8/12/2016
N-Nitrosodimethylamine	ND	0.19	mg/Kg-dry	1	8/12/2016
N-Nitrosodiphenylamine	ND	0.19	mg/Kg-dry	1	8/12/2016
2, 2'-oxybis(1-Chloropropane)	ND	0.19	mg/Kg-dry	1	8/12/2016
Pentachlorophenol	ND	0.074	mg/Kg-dry	1	8/12/2016
Phenanthrene	0.077	0.037	mg/Kg-dry	1	8/12/2016
Phenol	ND	0.19	mg/Kg-dry	1	8/12/2016
Pyrene	0.078	0.037	mg/Kg-dry	1	8/12/2016
Pyridine	ND	0.74	mg/Kg-dry	1	8/12/2016
1,2,4-Trichlorobenzene	ND	0.19	mg/Kg-dry	1	8/12/2016
2,4,5-Trichlorophenol	ND	0.19	mg/Kg-dry	1	8/12/2016
2,4,6-Trichlorophenol	ND	0.19	mg/Kg-dry	1	8/12/2016
Percent Moisture	D297	4	Prep	Date: 8/11/2016	Analyst: GH
Percent Moisture	10.6	0.2 *	wt%	1	8/12/2016

	ND - Not Detected at the Reporting Limit	RL - Reporting / Quantitation Limit for the analysis
Qualifiers:	J - Analyte detected below quanititation limits	S - Spike Recovery outside accepted recovery limits
	B - Analyte detected in the associated Method Blank	R - RPD outside accepted recovery limits
	HT - Sample received past holding time	E - Value above quantitation range
	* - Non-accredited parameter	H - Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported:August 18, 2016Date Printed:August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Lab ID:	16080494-004					, South	
Project:	26029, Woodlawn Station,	, 822 E 63rd,	Chicago,	IL	Matrix	: Soil	
Work Order:	16080494 Revision 0			Collec	tion Dat	e: 8/11/20	016 8:45:00 AM
Client:	K-Plus Engineering, LLC			Client S	ample II): B2-13-	14'

Volatile Organic Compounds by GC/MS	SW5035/8260B		Prep I	Prep Date: 8/11/2016			
Acetone	ND	0.088	mg/Kg-dry	1	8/11/2016		
Benzene	ND	0.0060	mg/Kg-dry	1	8/11/2016		
Bromodichloromethane	ND	0.0060	mg/Kg-dry	1	8/11/2016		
Bromoform	ND	0.0060	mg/Kg-dry	1	8/11/2016		
Bromomethane	ND	0.012	mg/Kg-dry	1	8/11/2016		
2-Butanone	ND	0.088	mg/Kg-dry	1	8/11/2016		
Carbon disulfide	ND	0.060	mg/Kg-dry	1	8/11/2016		
Carbon tetrachloride	ND	0.0060	mg/Kg-dry	1	8/11/2016		
Chlorobenzene	ND	0.0060	mg/Kg-dry	1	8/11/2016		
Chloroethane	ND	0.012	mg/Kg-dry	1	8/11/2016		
Chloroform	ND	0.0060	mg/Kg-dry	1	8/11/2016		
Chloromethane	ND	0.012	mg/Kg-dry	1	8/11/2016		
Dibromochloromethane	ND	0.0060	mg/Kg-dry	1	8/11/2016		
1,1-Dichloroethane	ND	0.0060	mg/Kg-dry	1	8/11/2016		
1,2-Dichloroethane	ND	0.0060	mg/Kg-dry	1	8/11/2016		
1,1-Dichloroethene	ND	0.0060	mg/Kg-dry	1	8/11/2016		
cis-1,2-Dichloroethene	ND	0.0060	mg/Kg-dry	1	8/11/2016		
trans-1,2-Dichloroethene	ND	0.0060	mg/Kg-dry	1	8/11/2016		
1,2-Dichloropropane	ND	0.0060	mg/Kg-dry	1	8/11/2016		
cis-1,3-Dichloropropene	ND	0.0024	mg/Kg-dry	1	8/11/2016		
trans-1,3-Dichloropropene	ND	0.0024	mg/Kg-dry	1	8/11/2016		
Ethylbenzene	ND	0.0060	mg/Kg-dry	1	8/11/2016		
2-Hexanone	ND	0.024	mg/Kg-dry	1	8/11/2016		
4-Methyl-2-pentanone	ND	0.024	mg/Kg-dry	1	8/11/2016		
Methylene chloride	ND	0.012	mg/Kg-dry	1	8/11/2016		
Methyl tert-butyl ether	ND	0.0060	mg/Kg-dry	1	8/11/2016		
Styrene	ND	0.0060	mg/Kg-dry	1	8/11/2016		
1,1,2,2-Tetrachloroethane	ND	0.0060	mg/Kg-dry	1	8/11/2016		
Tetrachloroethene	ND	0.0060	mg/Kg-dry	1	8/11/2016		
Toluene	ND	0.0060	mg/Kg-dry	1	8/11/2016		
1,1,1-Trichloroethane	ND	0.0060	mg/Kg-dry	1	8/11/2016		
1,1,2-Trichloroethane	ND	0.0060	mg/Kg-dry	1	8/11/2016		
Trichloroethene	ND	0.0060	mg/Kg-dry	1	8/11/2016		
Vinyl chloride	ND	0.0060	mg/Kg-dry	1	8/11/2016		
Xylenes, Total	ND	0.018	mg/Kg-dry	1	8/11/2016		
Percent Moisture	D297	4	Prep I	Date: 8/11/2016	Analyst: GH		
Percent Moisture	16.3	0.2	* wt%	1	8/12/2016		

ND - Not Detected at the Reporting Limit

Qualifiers:

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 18, 2016 **Date Printed:** August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed		
Lab ID:	16080494-006					. 2011			
Project:	26029, Woodlawn Station,	, 822 E 63rd,	Chicago,	IL	Matrix	: Soil			
Work Order:	16080494 Revision 0			Collec	tion Dat	e: 8/11/20	016 9:00:00 AM		
Client:	K-Plus Engineering, LLC			Client S	Client Sample ID: B3-9-11'				

Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep l	Prep Date: 8/11/2016				
Acetone	ND	0.085	mg/Kg-dry	1	8/11/2016			
Benzene	ND	0.0058	mg/Kg-dry	1	8/11/2016			
Bromodichloromethane	ND	0.0058	mg/Kg-dry	1	8/11/2016			
Bromoform	ND	0.0058	mg/Kg-dry	1	8/11/2016			
Bromomethane	ND	0.011	mg/Kg-dry	1	8/11/2016			
2-Butanone	ND	0.085	mg/Kg-dry	1	8/11/2016			
Carbon disulfide	ND	0.058	mg/Kg-dry	1	8/11/2016			
Carbon tetrachloride	ND	0.0058	mg/Kg-dry	1	8/11/2016			
Chlorobenzene	ND	0.0058	mg/Kg-dry	1	8/11/2016			
Chloroethane	ND	0.011	mg/Kg-dry	1	8/11/2016			
Chloroform	ND	0.0058	mg/Kg-dry	1	8/11/2016			
Chloromethane	ND	0.011	mg/Kg-dry	1	8/11/2016			
Dibromochloromethane	ND	0.0058	mg/Kg-dry	1	8/11/2016			
1,1-Dichloroethane	ND	0.0058	mg/Kg-dry	1	8/11/2016			
1,2-Dichloroethane	ND	0.0058	mg/Kg-dry	1	8/11/2016			
1,1-Dichloroethene	ND	0.0058	mg/Kg-dry	1	8/11/2016			
cis-1,2-Dichloroethene	ND	0.0058	mg/Kg-dry	1	8/11/2016			
trans-1,2-Dichloroethene	ND	0.0058	mg/Kg-dry	1	8/11/2016			
1,2-Dichloropropane	ND	0.0058	mg/Kg-dry	1	8/11/2016			
cis-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	1	8/11/2016			
trans-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	1	8/11/2016			
Ethylbenzene	ND	0.0058	mg/Kg-dry	1	8/11/2016			
2-Hexanone	ND	0.023	mg/Kg-dry	1	8/11/2016			
4-Methyl-2-pentanone	ND	0.023	mg/Kg-dry	1	8/11/2016			
Methylene chloride	ND	0.011	mg/Kg-dry	1	8/11/2016			
Methyl tert-butyl ether	ND	0.0058	mg/Kg-dry	1	8/11/2016			
Styrene	ND	0.0058	mg/Kg-dry	1	8/11/2016			
1,1,2,2-Tetrachloroethane	ND	0.0058	mg/Kg-dry	1	8/11/2016			
Tetrachloroethene	ND	0.0058	mg/Kg-dry	1	8/11/2016			
Toluene	ND	0.0058	mg/Kg-dry	1	8/11/2016			
1,1,1-Trichloroethane	ND	0.0058	mg/Kg-dry	1	8/11/2016			
1,1,2-Trichloroethane	ND	0.0058	mg/Kg-dry	1	8/11/2016			
Trichloroethene	ND	0.0058	mg/Kg-dry	1	8/11/2016			
Vinyl chloride	ND	0.0058	mg/Kg-dry	1	8/11/2016			
Xylenes, Total	ND	0.017	mg/Kg-dry	1	8/11/2016			
Percent Moisture	D297	4	Prep I	Date: 8/11/2016	Analyst: GH			
Percent Moisture	16.8	0.2	* wt%	1	8/12/2016			

ND - Not Detected at the Reporting Limit **Qualifiers:**

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 18, 2016 **Date Printed:** August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed		
Lab ID:	16080494-008					, Don			
Project:	26029, Woodlawn Station	, 822 E 63rd,	Chicago,	IL	Matrix	: Soil			
Work Order:	16080494 Revision 0			Collec	tion Dat	e : 8/11/20	016 9:20:00 AM		
Client:	K-Plus Engineering, LLC			Client S	Client Sample ID: B4-14-16'				

Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep [Prep Date: 8/11/2016		
Acetone	ND	0.081	mg/Kg-dry	1	8/12/2016	
Benzene	ND	0.0053	mg/Kg-dry	1	8/12/2016	
Bromodichloromethane	ND	0.0053	mg/Kg-dry	1	8/12/2016	
Bromoform	ND	0.0053	mg/Kg-dry	1	8/12/2016	
Bromomethane	ND	0.011	mg/Kg-dry	1	8/12/2016	
2-Butanone	ND	0.081	mg/Kg-dry	1	8/12/2016	
Carbon disulfide	ND	0.053	mg/Kg-dry	1	8/12/2016	
Carbon tetrachloride	ND	0.0053	mg/Kg-dry	1	8/12/2016	
Chlorobenzene	ND	0.0053	mg/Kg-dry	1	8/12/2016	
Chloroethane	ND	0.011	mg/Kg-dry	1	8/12/2016	
Chloroform	ND	0.0053	mg/Kg-dry	1	8/12/2016	
Chloromethane	ND	0.011	mg/Kg-dry	1	8/12/2016	
Dibromochloromethane	ND	0.0053	mg/Kg-dry	1	8/12/2016	
1,1-Dichloroethane	ND	0.0053	mg/Kg-dry	1	8/12/2016	
1,2-Dichloroethane	ND	0.0053	mg/Kg-dry	1	8/12/2016	
1,1-Dichloroethene	ND	0.0053	mg/Kg-dry	1	8/12/2016	
cis-1,2-Dichloroethene	ND	0.0053	mg/Kg-dry	1	8/12/2016	
trans-1,2-Dichloroethene	ND	0.0053	mg/Kg-dry	1	8/12/2016	
1,2-Dichloropropane	ND	0.0053	mg/Kg-dry	1	8/12/2016	
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	8/12/2016	
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	8/12/2016	
Ethylbenzene	ND	0.0053	mg/Kg-dry	1	8/12/2016	
2-Hexanone	ND	0.021	mg/Kg-dry	1	8/12/2016	
4-Methyl-2-pentanone	ND	0.021	mg/Kg-dry	1	8/12/2016	
Methylene chloride	ND	0.011	mg/Kg-dry	1	8/12/2016	
Methyl tert-butyl ether	ND	0.0053	mg/Kg-dry	1	8/12/2016	
Styrene	ND	0.0053	mg/Kg-dry	1	8/12/2016	
1,1,2,2-Tetrachloroethane	ND	0.0053	mg/Kg-dry	1	8/12/2016	
Tetrachloroethene	ND	0.0053	mg/Kg-dry	1	8/12/2016	
Toluene	ND	0.0053	mg/Kg-dry	1	8/12/2016	
1,1,1-Trichloroethane	ND	0.0053	mg/Kg-dry	1	8/12/2016	
1,1,2-Trichloroethane	ND	0.0053	mg/Kg-dry	1	8/12/2016	
Trichloroethene	ND	0.0053	mg/Kg-dry	1	8/12/2016	
Vinyl chloride	ND	0.0053	mg/Kg-dry	1	8/12/2016	
Xylenes, Total	ND	0.016	mg/Kg-dry	1	8/12/2016	
Percent Moisture	D297	4	Prep [Date: 8/11/2016	Analyst: GH	
Percent Moisture	20.6	0.2	* wt%	1	8/12/2016	

ND - Not Detected at the Reporting Limit **Qualifiers:**

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 18, 2016 **Date Printed:** August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed		
Lab ID:	16080494-009					Don			
Project:	26029, Woodlawn Station,	, 822 E 63rd,	Chicago,	IL	Matrix	: Soil			
Work Order:	16080494 Revision 0			Collec	tion Dat	e: 8/11/20)16 9:45:00 AM		
Client:	K-Plus Engineering, LLC			Client S	Client Sample ID: B5-9-11				

Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep D	Prep Date: 8/11/2016			
Acetone	ND	0.082	mg/Kg-dry	1	8/12/2016		
Benzene	ND	0.0055	mg/Kg-dry	1	8/12/2016		
Bromodichloromethane	ND	0.0055	mg/Kg-dry	1	8/12/2016		
Bromoform	ND	0.0055	mg/Kg-dry	1	8/12/2016		
Bromomethane	ND	0.011	mg/Kg-dry	1	8/12/2016		
2-Butanone	ND	0.082	mg/Kg-dry	1	8/12/2016		
Carbon disulfide	ND	0.055	mg/Kg-dry	1	8/12/2016		
Carbon tetrachloride	ND	0.0055	mg/Kg-dry	1	8/12/2016		
Chlorobenzene	ND	0.0055	mg/Kg-dry	1	8/12/2016		
Chloroethane	ND	0.011	mg/Kg-dry	1	8/12/2016		
Chloroform	ND	0.0055	mg/Kg-dry	1	8/12/2016		
Chloromethane	ND	0.011	mg/Kg-dry	1	8/12/2016		
Dibromochloromethane	ND	0.0055	mg/Kg-dry	1	8/12/2016		
1,1-Dichloroethane	ND	0.0055	mg/Kg-dry	1	8/12/2016		
1,2-Dichloroethane	ND	0.0055	mg/Kg-dry	1	8/12/2016		
1,1-Dichloroethene	ND	0.0055	mg/Kg-dry	1	8/12/2016		
cis-1,2-Dichloroethene	ND	0.0055	mg/Kg-dry	1	8/12/2016		
trans-1,2-Dichloroethene	ND	0.0055	mg/Kg-dry	1	8/12/2016		
1,2-Dichloropropane	ND	0.0055	mg/Kg-dry	1	8/12/2016		
cis-1,3-Dichloropropene	ND	0.0022	mg/Kg-dry	1	8/12/2016		
trans-1,3-Dichloropropene	ND	0.0022	mg/Kg-dry	1	8/12/2016		
Ethylbenzene	ND	0.0055	mg/Kg-dry	1	8/12/2016		
2-Hexanone	ND	0.022	mg/Kg-dry	1	8/12/2016		
4-Methyl-2-pentanone	ND	0.022	mg/Kg-dry	1	8/12/2016		
Methylene chloride	ND	0.011	mg/Kg-dry	1	8/12/2016		
Methyl tert-butyl ether	ND	0.0055	mg/Kg-dry	1	8/12/2016		
Styrene	ND	0.0055	mg/Kg-dry	1	8/12/2016		
1,1,2,2-Tetrachloroethane	ND	0.0055	mg/Kg-dry	1	8/12/2016		
Tetrachloroethene	ND	0.0055	mg/Kg-dry	1	8/12/2016		
Toluene	ND	0.0055	mg/Kg-dry	1	8/12/2016		
1,1,1-Trichloroethane	ND	0.0055	mg/Kg-dry	1	8/12/2016		
1,1,2-Trichloroethane	ND	0.0055	mg/Kg-dry	1	8/12/2016		
Trichloroethene	ND	0.0055	mg/Kg-dry	1	8/12/2016		
Vinyl chloride	ND	0.0055	mg/Kg-dry	1	8/12/2016		
Xylenes, Total	ND	0.016	mg/Kg-dry	1	8/12/2016		
Percent Moisture	D297	4	Prep D	ate: 8/11/2016	Analyst: GH		
Percent Moisture	18.2	0.2	* wt%	1	8/12/2016		

ND - Not Detected at the Reporting Limit **Qualifiers:**

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 18, 2016 **Date Printed:** August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed		
Lab ID:	16080494-010					. 2011			
Project:	26029, Woodlawn Station,	, 822 E 63rd,	Chicago,	IL	Matrix	: Soil			
Work Order:	16080494 Revision 0			Collec	tion Date	e: 8/11/20	016 10:30:00 AM		
Client:	K-Plus Engineering, LLC			Client S	Client Sample ID: B6-9-11				

Volatile Organic Compounds by GC/MS	SW5	N5035/8260B		Date: 8/11/2016	Analyst: JNM
Acetone	ND	0.088	mg/Kg-dry	1	8/12/2016
Benzene	ND	0.0059	mg/Kg-dry	1	8/12/2016
Bromodichloromethane	ND	0.0059	mg/Kg-dry	1	8/12/2016
Bromoform	ND	0.0059	mg/Kg-dry	1	8/12/2016
Bromomethane	ND	0.012	mg/Kg-dry	1	8/12/2016
2-Butanone	ND	0.088	mg/Kg-dry	1	8/12/2016
Carbon disulfide	ND	0.059	mg/Kg-dry	1	8/12/2016
Carbon tetrachloride	ND	0.0059	mg/Kg-dry	1	8/12/2016
Chlorobenzene	ND	0.0059	mg/Kg-dry	1	8/12/2016
Chloroethane	ND	0.012	mg/Kg-dry	1	8/12/2016
Chloroform	ND	0.0059	mg/Kg-dry	1	8/12/2016
Chloromethane	ND	0.012	mg/Kg-dry	1	8/12/2016
Dibromochloromethane	ND	0.0059	mg/Kg-dry	1	8/12/2016
1,1-Dichloroethane	ND	0.0059	mg/Kg-dry	1	8/12/2016
1,2-Dichloroethane	ND	0.0059	mg/Kg-dry	1	8/12/2016
1,1-Dichloroethene	ND	0.0059	mg/Kg-dry	1	8/12/2016
cis-1,2-Dichloroethene	ND	0.0059	mg/Kg-dry	1	8/12/2016
trans-1,2-Dichloroethene	ND	0.0059	mg/Kg-dry	1	8/12/2016
1,2-Dichloropropane	ND	0.0059	mg/Kg-dry	1	8/12/2016
cis-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	1	8/12/2016
trans-1,3-Dichloropropene	ND	0.0023	mg/Kg-dry	1	8/12/2016
Ethylbenzene	ND	0.0059	mg/Kg-dry	1	8/12/2016
2-Hexanone	ND	0.023	mg/Kg-dry	1	8/12/2016
4-Methyl-2-pentanone	ND	0.023	mg/Kg-dry	1	8/12/2016
Methylene chloride	ND	0.012	mg/Kg-dry	1	8/12/2016
Methyl tert-butyl ether	ND	0.0059	mg/Kg-dry	1	8/12/2016
Styrene	ND	0.0059	mg/Kg-dry	1	8/12/2016
1,1,2,2-Tetrachloroethane	ND	0.0059	mg/Kg-dry	1	8/12/2016
Tetrachloroethene	ND	0.0059	mg/Kg-dry	1	8/12/2016
Toluene	ND	0.0059	mg/Kg-dry	1	8/12/2016
1,1,1-Trichloroethane	ND	0.0059	mg/Kg-dry	1	8/12/2016
1,1,2-Trichloroethane	ND	0.0059	mg/Kg-dry	1	8/12/2016
Trichloroethene	ND	0.0059	mg/Kg-dry	1	8/12/2016
Vinyl chloride	ND	0.0059	mg/Kg-dry	1	8/12/2016
Xylenes, Total	ND	0.017	mg/Kg-dry	1	8/12/2016
Percent Moisture	D297	'4	Prep [Date: 8/11/2016	Analyst: GH
Percent Moisture	18.0	0.2	* wt%	1	8/12/2016

ND - Not Detected at the Reporting Limit **Qualifiers:**

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 18, 2016 **Date Printed:** August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed		
Lab ID:	16080494-012								
Project:	26029, Woodlawn Station,	822 E 63rd,	Chicago,	IL	Matrix	: Soil			
Work Order:	16080494 Revision 0			Collec	tion Dat	e: 8/11/20	016 10:50:00 AM		
Client:	K-Plus Engineering, LLC			Client S	Client Sample ID: B7-8-9				

Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Prep Date: 8/11/2016				
Acetone	ND	0.089	mg/Kg-dry	1	8/12/2016			
Benzene	ND	0.0059	mg/Kg-dry	1	8/12/2016			
Bromodichloromethane	ND	0.0059	mg/Kg-dry	1	8/12/2016			
Bromoform	ND	0.0059	mg/Kg-dry	1	8/12/2016			
Bromomethane	ND	0.012	mg/Kg-dry	1	8/12/2016			
2-Butanone	ND	0.089	mg/Kg-dry	1	8/12/2016			
Carbon disulfide	ND	0.059	mg/Kg-dry	1	8/12/2016			
Carbon tetrachloride	ND	0.0059	mg/Kg-dry	1	8/12/2016			
Chlorobenzene	ND	0.0059	mg/Kg-dry	1	8/12/2016			
Chloroethane	ND	0.012	mg/Kg-dry	1	8/12/2016			
Chloroform	ND	0.0059	mg/Kg-dry	1	8/12/2016			
Chloromethane	ND	0.012	mg/Kg-dry	1	8/12/2016			
Dibromochloromethane	ND	0.0059	mg/Kg-dry	1	8/12/2016			
1,1-Dichloroethane	ND	0.0059	mg/Kg-dry	1	8/12/2016			
1,2-Dichloroethane	ND	0.0059	mg/Kg-dry	1	8/12/2016			
1,1-Dichloroethene	ND	0.0059	mg/Kg-dry	1	8/12/2016			
cis-1,2-Dichloroethene	ND	0.0059	mg/Kg-dry	1	8/12/2016			
trans-1,2-Dichloroethene	ND	0.0059	mg/Kg-dry	1	8/12/2016			
1,2-Dichloropropane	ND	0.0059	mg/Kg-dry	1	8/12/2016			
cis-1,3-Dichloropropene	ND	0.0024	mg/Kg-dry	1	8/12/2016			
trans-1,3-Dichloropropene	ND	0.0024	mg/Kg-dry	1	8/12/2016			
Ethylbenzene	ND	0.0059	mg/Kg-dry	1	8/12/2016			
2-Hexanone	ND	0.024	mg/Kg-dry	1	8/12/2016			
4-Methyl-2-pentanone	ND	0.024	mg/Kg-dry	1	8/12/2016			
Methylene chloride	ND	0.012	mg/Kg-dry	1	8/12/2016			
Methyl tert-butyl ether	ND	0.0059	mg/Kg-dry	1	8/12/2016			
Styrene	ND	0.0059	mg/Kg-dry	1	8/12/2016			
1,1,2,2-Tetrachloroethane	ND	0.0059	mg/Kg-dry	1	8/12/2016			
Tetrachloroethene	ND	0.0059	mg/Kg-dry	1	8/12/2016			
Toluene	ND	0.0059	mg/Kg-dry	1	8/12/2016			
1,1,1-Trichloroethane	ND	0.0059	mg/Kg-dry	1	8/12/2016			
1,1,2-Trichloroethane	ND	0.0059	mg/Kg-dry	1	8/12/2016			
Trichloroethene	ND	0.0059	mg/Kg-dry	1	8/12/2016			
Vinyl chloride	ND	0.0059	mg/Kg-dry	1	8/12/2016			
Xylenes, Total	ND	0.018	mg/Kg-dry	1	8/12/2016			
Percent Moisture	D297	4	Prep	Date: 8/11/2016	Analyst: GH			
Percent Moisture	16.9	0.2	* wt%	1	8/12/2016			

ND - Not Detected at the Reporting Limit **Qualifiers:**

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 18, 2016 **Date Printed:** August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed	
Lab ID:	16080494-013					· Son		
Project:	26029, Woodlawn Station,	, 822 E 63rd,	Chicago,	IL	Matrix	: Soil		
Work Order:	16080494 Revision 0			Collec	tion Date	e: 8/11/20)16 11:30:00 AM	
Client:	K-Plus Engineering, LLC			Client S	ample ID	: B9-10-	-10-12	

Volatile Organic Compounds by GC/MS	SW50	35/8260B	Prep [Date: 8/11/2016	Analyst: ART
Acetone	ND	4.4	mg/Kg-dry	50	8/12/2016
Benzene	ND	0.12	mg/Kg-dry	50	8/12/2016
Bromodichloromethane	ND	0.30	mg/Kg-dry	50	8/12/2016
Bromoform	ND	0.30	mg/Kg-dry	50	8/12/2016
Bromomethane	ND	0.59	mg/Kg-dry	50	8/12/2016
2-Butanone	ND	4.4	mg/Kg-dry	50	8/12/2016
Carbon disulfide	ND	3.0	mg/Kg-dry	50	8/12/2016
Carbon tetrachloride	ND	0.30	mg/Kg-dry	50	8/12/2016
Chlorobenzene	ND	0.30	mg/Kg-dry	50	8/12/2016
Chloroethane	ND	0.59	mg/Kg-dry	50	8/12/2016
Chloroform	ND	0.30	mg/Kg-dry	50	8/12/2016
Chloromethane	ND	0.59	mg/Kg-dry	50	8/12/2016
Dibromochloromethane	ND	0.30	mg/Kg-dry	50	8/12/2016
1,1-Dichloroethane	ND	0.30	mg/Kg-dry	50	8/12/2016
1,2-Dichloroethane	ND	0.30	mg/Kg-dry	50	8/12/2016
1,1-Dichloroethene	ND	0.30	mg/Kg-dry	50	8/12/2016
cis-1,2-Dichloroethene	ND	0.30	mg/Kg-dry	50	8/12/2016
trans-1,2-Dichloroethene	ND	0.30	mg/Kg-dry	50	8/12/2016
1,2-Dichloropropane	ND	0.30	mg/Kg-dry	50	8/12/2016
cis-1,3-Dichloropropene	ND	0.12	mg/Kg-dry	50	8/12/2016
trans-1,3-Dichloropropene	ND	0.12	mg/Kg-dry	50	8/12/2016
Ethylbenzene	ND	0.12	mg/Kg-dry	50	8/12/2016
2-Hexanone	ND	1.2	mg/Kg-dry	50	8/12/2016
4-Methyl-2-pentanone	ND	1.2	mg/Kg-dry	50	8/12/2016
Methylene chloride	ND	0.59	mg/Kg-dry	50	8/12/2016
Methyl tert-butyl ether	ND	0.30	mg/Kg-dry	50	8/12/2016
Styrene	ND	0.30	mg/Kg-dry	50	8/12/2016
1,1,2,2-Tetrachloroethane	ND	0.30	mg/Kg-dry	50	8/12/2016
Tetrachloroethene	ND	0.30	mg/Kg-dry	50	8/12/2016
Toluene	ND	0.12	mg/Kg-dry	50	8/12/2016
1,1,1-Trichloroethane	ND	0.30	mg/Kg-dry	50	8/12/2016
1,1,2-Trichloroethane	ND	0.30	mg/Kg-dry	50	8/12/2016
Trichloroethene	ND	0.30	mg/Kg-dry	50	8/12/2016
Vinyl chloride	ND	0.30	mg/Kg-dry	50	8/12/2016
Xylenes, Total	ND	0.35	mg/Kg-dry	50	8/12/2016
Percent Moisture	D2974	ļ	Prep [Date: 8/11/2016	Analyst: GH
Percent Moisture	20.7	0.2	* wt%	1	8/12/2016

ND - Not Detected at the Reporting Limit **Qualifiers:**

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 18, 2016 **Date Printed:** August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Lab ID:	16080494-014						
Project:	26029, Woodlawn Station,	, 822 E 63rd,	Chicago,	IL	Matrix	: Soil	
Work Order:	16080494 Revision 0			Collec	- tion Dat	e: 8/11/20)16 11:30:00 AM
Client:	K-Plus Engineering, LLC			Client S	ample ID	: B9-15-	16

Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep l	Date: 8/16/2016	Analyst: JNM
Acetone	ND	0.11	mg/Kg-dry	1	8/17/2016
Benzene	ND	0.0072	mg/Kg-dry	1	8/17/2016
Bromodichloromethane	ND	0.0072	mg/Kg-dry	1	8/17/2016
Bromoform	ND	0.0072	mg/Kg-dry	1	8/17/2016
Bromomethane	ND	0.014	mg/Kg-dry	1	8/17/2016
2-Butanone	ND	0.11	mg/Kg-dry	1	8/17/2016
Carbon disulfide	ND	0.072	mg/Kg-dry	1	8/17/2016
Carbon tetrachloride	ND	0.0072	mg/Kg-dry	1	8/17/2016
Chlorobenzene	ND	0.0072	mg/Kg-dry	1	8/17/2016
Chloroethane	ND	0.014	mg/Kg-dry	1	8/17/2016
Chloroform	ND	0.0072	mg/Kg-dry	1	8/17/2016
Chloromethane	ND	0.014	mg/Kg-dry	1	8/17/2016
Dibromochloromethane	ND	0.0072	mg/Kg-dry	1	8/17/2016
1,1-Dichloroethane	ND	0.0072	mg/Kg-dry	1	8/17/2016
1,2-Dichloroethane	ND	0.0072	mg/Kg-dry	1	8/17/2016
1,1-Dichloroethene	ND	0.0072	mg/Kg-dry	1	8/17/2016
cis-1,2-Dichloroethene	ND	0.0072	mg/Kg-dry	1	8/17/2016
trans-1,2-Dichloroethene	ND	0.0072	mg/Kg-dry	1	8/17/2016
1,2-Dichloropropane	ND	0.0072	mg/Kg-dry	1	8/17/2016
cis-1,3-Dichloropropene	ND	0.0029	mg/Kg-dry	1	8/17/2016
trans-1,3-Dichloropropene	ND	0.0029	mg/Kg-dry	1	8/17/2016
Ethylbenzene	ND	0.0072	mg/Kg-dry	1	8/17/2016
2-Hexanone	ND	0.029	mg/Kg-dry	1	8/17/2016
4-Methyl-2-pentanone	ND	0.029	mg/Kg-dry	1	8/17/2016
Methylene chloride	ND	0.014	mg/Kg-dry	1	8/17/2016
Methyl tert-butyl ether	ND	0.0072	mg/Kg-dry	1	8/17/2016
Styrene	ND	0.0072	mg/Kg-dry	1	8/17/2016
1,1,2,2-Tetrachloroethane	ND	0.0072	mg/Kg-dry	1	8/17/2016
Tetrachloroethene	ND	0.0072	mg/Kg-dry	1	8/17/2016
Toluene	ND	0.0072	mg/Kg-dry	1	8/17/2016
1,1,1-Trichloroethane	ND	0.0072	mg/Kg-dry	1	8/17/2016
1,1,2-Trichloroethane	ND	0.0072	mg/Kg-dry	1	8/17/2016
Trichloroethene	ND	0.0072	mg/Kg-dry	1	8/17/2016
Vinyl chloride	ND	0.0072	mg/Kg-dry	1	8/17/2016
Xylenes, Total	ND	0.022	mg/Kg-dry	1	8/17/2016
Percent Moisture	D297	'4	Prep I	Date: 8/11/2016	Analyst: GH
Percent Moisture	20.2	0.2	* wt%	1	8/12/2016

ND - Not Detected at the Reporting Limit **Qualifiers:**

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- HT Sample received past holding time
- * Non-accredited parameter

- RL Reporting / Quantitation Limit for the analysis
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- H Holding time exceeded

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 18, 2016 **Date Printed:** August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Lab ID:	16080494-015					, Don	
Project:	26029, Woodlawn Station,	822 E 63rd,	Chicago,	IL	Matrix	: Soil	
Work Order:	16080494 Revision 0			Collec	tion Dat	e : 8/11/20	016 12:00:00 PM
Client:	K-Plus Engineering, LLC			Client S	ample II): B10-8-	10

Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep [Date: 8/11/2016	Analyst: JNM
Acetone	ND	0.078	mg/Kg-dry	1	8/12/2016
Benzene	ND	0.0052	mg/Kg-dry	1	8/12/2016
Bromodichloromethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
Bromoform	ND	0.0052	mg/Kg-dry	1	8/12/2016
Bromomethane	ND	0.010	mg/Kg-dry	1	8/12/2016
2-Butanone	ND	0.078	mg/Kg-dry	1	8/12/2016
Carbon disulfide	ND	0.052	mg/Kg-dry	1	8/12/2016
Carbon tetrachloride	ND	0.0052	mg/Kg-dry	1	8/12/2016
Chlorobenzene	ND	0.0052	mg/Kg-dry	1	8/12/2016
Chloroethane	ND	0.010	mg/Kg-dry	1	8/12/2016
Chloroform	ND	0.0052	mg/Kg-dry	1	8/12/2016
Chloromethane	ND	0.010	mg/Kg-dry	1	8/12/2016
Dibromochloromethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,1-Dichloroethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,2-Dichloroethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,1-Dichloroethene	ND	0.0052	mg/Kg-dry	1	8/12/2016
cis-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	8/12/2016
trans-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,2-Dichloropropane	ND	0.0052	mg/Kg-dry	1	8/12/2016
cis-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	8/12/2016
trans-1,3-Dichloropropene	ND	0.0021	mg/Kg-dry	1	8/12/2016
Ethylbenzene	ND	0.0052	mg/Kg-dry	1	8/12/2016
2-Hexanone	ND	0.021	mg/Kg-dry	1	8/12/2016
4-Methyl-2-pentanone	ND	0.021	mg/Kg-dry	1	8/12/2016
Methylene chloride	ND	0.010	mg/Kg-dry	1	8/12/2016
Methyl tert-butyl ether	ND	0.0052	mg/Kg-dry	1	8/12/2016
Styrene	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,1,2,2-Tetrachloroethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
Tetrachloroethene	ND	0.0052	mg/Kg-dry	1	8/12/2016
Toluene	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,1,1-Trichloroethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,1,2-Trichloroethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
Trichloroethene	ND	0.0052	mg/Kg-dry	1	8/12/2016
Vinyl chloride	ND	0.0052	mg/Kg-dry	1	8/12/2016
Xylenes, Total	ND	0.016	mg/Kg-dry	1	8/12/2016
Percent Moisture	D297	4	Prep I	Date: 8/11/2016	Analyst: GH
Percent Moisture	19.6	0.2	* wt%	1	8/12/2016

ND - Not Detected at the Reporting Limit **Qualifiers:**

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations:IEPA ELAP 100445;ORELAP IL300001;AIHA-LAP, LLC 101160;NVLAP LabCode 101202-0

Date Reported:August 18, 2016Date Printed:August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Lab ID:	16080494-017					, Sour	
Project:	26029, Woodlawn Station,	, 822 E 63rd,	Chicago,	IL	Matrix	: Soil	
Work Order:	16080494 Revision 0			Collec	tion Dat	e: 8/11/2	016 12:20:00 PM
Client:	K-Plus Engineering, LLC			Client S	ample II): B11-9-	10

Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep	Date: 8/11/2016	Analyst: JNM
Acetone	ND	0.078	mg/Kg-dry	1	8/12/2016
Benzene	ND	0.0052	mg/Kg-dry	1	8/12/2016
Bromodichloromethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
Bromoform	ND	0.0052	mg/Kg-dry	1	8/12/2016
Bromomethane	ND	0.010	mg/Kg-dry	1	8/12/2016
2-Butanone	ND	0.078	mg/Kg-dry	1	8/12/2016
Carbon disulfide	ND	0.052	mg/Kg-dry	1	8/12/2016
Carbon tetrachloride	ND	0.0052	mg/Kg-dry	1	8/12/2016
Chlorobenzene	ND	0.0052	mg/Kg-dry	1	8/12/2016
Chloroethane	ND	0.010	mg/Kg-dry	1	8/12/2016
Chloroform	ND	0.0052	mg/Kg-dry	1	8/12/2016
Chloromethane	ND	0.010	mg/Kg-dry	1	8/12/2016
Dibromochloromethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,1-Dichloroethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,2-Dichloroethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,1-Dichloroethene	ND	0.0052	mg/Kg-dry	1	8/12/2016
cis-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	8/12/2016
trans-1,2-Dichloroethene	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,2-Dichloropropane	ND	0.0052	mg/Kg-dry	1	8/12/2016
cis-1,3-Dichloropropene	ND	0.0020	mg/Kg-dry	1	8/12/2016
trans-1,3-Dichloropropene	ND	0.0020	mg/Kg-dry	1	8/12/2016
Ethylbenzene	ND	0.0052	mg/Kg-dry	1	8/12/2016
2-Hexanone	ND	0.020	mg/Kg-dry	1	8/12/2016
4-Methyl-2-pentanone	ND	0.020	mg/Kg-dry	1	8/12/2016
Methylene chloride	ND	0.010	mg/Kg-dry	1	8/12/2016
Methyl tert-butyl ether	ND	0.0052	mg/Kg-dry	1	8/12/2016
Styrene	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,1,2,2-Tetrachloroethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
Tetrachloroethene	ND	0.0052	mg/Kg-dry	1	8/12/2016
Toluene	0.0054	0.0052	mg/Kg-dry	1	8/12/2016
1,1,1-Trichloroethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
1,1,2-Trichloroethane	ND	0.0052	mg/Kg-dry	1	8/12/2016
Trichloroethene	ND	0.0052	mg/Kg-dry	1	8/12/2016
Vinyl chloride	ND	0.0052	mg/Kg-dry	1	8/12/2016
Xylenes, Total	ND	0.016	mg/Kg-dry	1	8/12/2016
Percent Moisture	D297	'4	Prep	Date: 8/11/2016	Analyst: GH
Percent Moisture	16.8	0.2	* wt%	1	8/12/2016

ND - Not Detected at the Reporting Limit

Qualifiers:

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 18, 2016 **Date Printed:** August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Lab ID:	16080494-019					, Sour	
Project:	26029, Woodlawn Station,	822 E 63rd,	Chicago,	IL	Matrix	: Soil	
Work Order:	16080494 Revision 0			Collec	tion Dat	e: 8/11/2	016 12:45:00 PM
Client:	K-Plus Engineering, LLC			Client S	ample II): B12-10	0-12

Volatile Organic Compounds by GC/MS	SW5	035/8260B	Prep I	Date: 8/11/2016	Analyst: JNM
Acetone	ND	0.074	mg/Kg-dry	1	8/12/2016
Benzene	ND	0.0049	mg/Kg-dry	1	8/12/2016
Bromodichloromethane	ND	0.0049	mg/Kg-dry	1	8/12/2016
Bromoform	ND	0.0049	mg/Kg-dry	1	8/12/2016
Bromomethane	ND	0.0098	mg/Kg-dry	1	8/12/2016
2-Butanone	ND	0.074	mg/Kg-dry	1	8/12/2016
Carbon disulfide	ND	0.049	mg/Kg-dry	1	8/12/2016
Carbon tetrachloride	ND	0.0049	mg/Kg-dry	1	8/12/2016
Chlorobenzene	ND	0.0049	mg/Kg-dry	1	8/12/2016
Chloroethane	ND	0.0098	mg/Kg-dry	1	8/12/2016
Chloroform	ND	0.0049	mg/Kg-dry	1	8/12/2016
Chloromethane	ND	0.0098	mg/Kg-dry	1	8/12/2016
Dibromochloromethane	ND	0.0049	mg/Kg-dry	1	8/12/2016
1,1-Dichloroethane	ND	0.0049	mg/Kg-dry	1	8/12/2016
1,2-Dichloroethane	ND	0.0049	mg/Kg-dry	1	8/12/2016
1,1-Dichloroethene	ND	0.0049	mg/Kg-dry	1	8/12/2016
cis-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	8/12/2016
trans-1,2-Dichloroethene	ND	0.0049	mg/Kg-dry	1	8/12/2016
1,2-Dichloropropane	ND	0.0049	mg/Kg-dry	1	8/12/2016
cis-1,3-Dichloropropene	ND	0.0020	mg/Kg-dry	1	8/12/2016
trans-1,3-Dichloropropene	ND	0.0020	mg/Kg-dry	1	8/12/2016
Ethylbenzene	ND	0.0049	mg/Kg-dry	1	8/12/2016
2-Hexanone	ND	0.020	mg/Kg-dry	1	8/12/2016
4-Methyl-2-pentanone	ND	0.020	mg/Kg-dry	1	8/12/2016
Methylene chloride	ND	0.0098	mg/Kg-dry	1	8/12/2016
Methyl tert-butyl ether	ND	0.0049	mg/Kg-dry	1	8/12/2016
Styrene	ND	0.0049	mg/Kg-dry	1	8/12/2016
1,1,2,2-Tetrachloroethane	ND	0.0049	mg/Kg-dry	1	8/12/2016
Tetrachloroethene	ND	0.0049	mg/Kg-dry	1	8/12/2016
Toluene	ND	0.0049	mg/Kg-dry	1	8/12/2016
1,1,1-Trichloroethane	ND	0.0049	mg/Kg-dry	1	8/12/2016
1,1,2-Trichloroethane	ND	0.0049	mg/Kg-dry	1	8/12/2016
Trichloroethene	ND	0.0049	mg/Kg-dry	1	8/12/2016
Vinyl chloride	ND	0.0049	mg/Kg-dry	1	8/12/2016
Xylenes, Total	ND	0.015	mg/Kg-dry	1	8/12/2016
Percent Moisture	D297	4	Prep I	Date: 8/11/2016	Analyst: GH
Percent Moisture	19.0	0.2	* wt%	1	8/12/2016

ND - Not Detected at the Reporting Limit **Qualifiers:**

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Date Reported: August 18, 2016 **Date Printed:** August 18, 2016

ANALYTICAL RESULTS

Analyses		Result	RL	Qualifier	Units	DF	Date Analyzed
Lab ID:	16080494-020						
Project:	26029, Woodlawn Station,	, 822 E 63rd,	Chicago,	IL	Matrix	: Soil	
Work Order:	16080494 Revision 0			Collec	tion Dat	e: 8/11/20	016 1:15:00 PM
Client:	K-Plus Engineering, LLC			Client S	ample II): B13-10	-12'

Volatile Organic Compounds by GC/MS	SW50)35/8260B	Prep I	Date: 8/11/2016	Analyst: ART
Acetone	ND	3.7	mg/Kg-dry	50	8/12/2016
Benzene	ND	0.098	mg/Kg-dry	50	8/12/2016
Bromodichloromethane	ND	0.25	mg/Kg-dry	50	8/12/2016
Bromoform	ND	0.25	mg/Kg-dry	50	8/12/2016
Bromomethane	ND	0.49	mg/Kg-dry	50	8/12/2016
2-Butanone	ND	3.7	mg/Kg-dry	50	8/12/2016
Carbon disulfide	ND	2.5	mg/Kg-dry	50	8/12/2016
Carbon tetrachloride	ND	0.25	mg/Kg-dry	50	8/12/2016
Chlorobenzene	ND	0.25	mg/Kg-dry	50	8/12/2016
Chloroethane	ND	0.49	mg/Kg-dry	50	8/12/2016
Chloroform	ND	0.25	mg/Kg-dry	50	8/12/2016
Chloromethane	ND	0.49	mg/Kg-dry	50	8/12/2016
Dibromochloromethane	ND	0.25	mg/Kg-dry	50	8/12/2016
1,1-Dichloroethane	ND	0.25	mg/Kg-dry	50	8/12/2016
1,2-Dichloroethane	ND	0.25	mg/Kg-dry	50	8/12/2016
1,1-Dichloroethene	ND	0.25	mg/Kg-dry	50	8/12/2016
cis-1,2-Dichloroethene	ND	0.25	mg/Kg-dry	50	8/12/2016
trans-1,2-Dichloroethene	ND	0.25	mg/Kg-dry	50	8/12/2016
1,2-Dichloropropane	ND	0.25	mg/Kg-dry	50	8/12/2016
cis-1,3-Dichloropropene	ND	0.098	mg/Kg-dry	50	8/12/2016
trans-1,3-Dichloropropene	ND	0.098	mg/Kg-dry	50	8/12/2016
Ethylbenzene	ND	0.098	mg/Kg-dry	50	8/12/2016
2-Hexanone	ND	0.98	mg/Kg-dry	50	8/12/2016
4-Methyl-2-pentanone	ND	0.98	mg/Kg-dry	50	8/12/2016
Methylene chloride	ND	0.49	mg/Kg-dry	50	8/12/2016
Methyl tert-butyl ether	ND	0.25	mg/Kg-dry	50	8/12/2016
Styrene	ND	0.25	mg/Kg-dry	50	8/12/2016
1,1,2,2-Tetrachloroethane	ND	0.25	mg/Kg-dry	50	8/12/2016
Tetrachloroethene	ND	0.25	mg/Kg-dry	50	8/12/2016
Toluene	ND	0.098	mg/Kg-dry	50	8/12/2016
1,1,1-Trichloroethane	ND	0.25	mg/Kg-dry	50	8/12/2016
1,1,2-Trichloroethane	ND	0.25	mg/Kg-dry	50	8/12/2016
Trichloroethene	ND	0.25	mg/Kg-dry	50	8/12/2016
Vinyl chloride	ND	0.25	mg/Kg-dry	50	8/12/2016
Xylenes, Total	ND	0.30	mg/Kg-dry	50	8/12/2016
Percent Moisture	D297	4	Prep I	Date: 8/11/2016	Analyst: GH
Percent Moisture	16.9	0.2	* wt%	1	8/12/2016

ND - Not Detected at the Reporting Limit **Qualifiers:**

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank

HT - Sample received past holding time

* - Non-accredited parameter

RL - Reporting / Quantitation Limit for the analysis

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

STAT

	•		ς	1
1	í		5	
			1	
	1			
1	ł	1	7	l

Analysis Corporation 2242 W. Harrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386 e-mail address: STA Tinfo@STATA nalysis.com AIHA, NVLAP and NELAP accredited

)	CHAIN OF CUS	STODY RECORD \mathbb{N}^{0} .	863800 Page : 2 of 2
Company: K-Mus Engineer	er.nr	P.O. No.:	
Project Number: 26021	U Client Tracking No.:		
Project Name: w w land 54	tahun	Quote No.:	
Project Location: 822 E 65	a chicapet		
Sampler(s):	D		
Report To: Har an Colig	Phone:		The Around.
	Fax:		
QC Level: 1 2 3 4	e-mail: adrongok lus, um		Results Needed
Client Sample Number/Description:	Date Taken Time Tx p. Containers		am/pm
813 - 10-12	811/16 1315 Sail X 4	┝┝╎┝╎┝╎┝	Remarks Lab No.:
813-15-161	L 1315 Sold K 4		
Relinquished by: (Signature) A. a. C. A.	Date/Time: 3/11// 1C130	Comments:	
Received by: (Signature)	Date/Time: 3/////0 (Si 2C		Laboratory Work Order No.:
Relinquished by: (Signature)	Date/Time:		1,202091
Received by: (Signature)	Date/Time:		
Relinquished by: (Signature)	Date/Time:	Preservation Code: A = None B = HNO, C =	VaOH
Received by: (Signature)	Date/Time:	$D = H_2 SO_4 = E = HCI = F = 5035/EnCore = G =$	Other Temperature: 5, 2°C

11 3 B

Sample	Receipt	Checklist
--------	---------	-----------

Client Name K-PLUS		Date and Tin	ne Received:	8/11/2016 3:20:00 PM
Work Order Number 16080494	ĺ	Received by:	JDR	
			ře.	allob 110
Checklist completed by: Signature Date	11/16	Reviewed by	: Initials	00/12/2010 Date
Matrix: Carrier name	Client Delivered			
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on shippping container/cooler?	Yes 🗌	No 🗌	Not Present	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present	
Chain of custody present?	Yes 🗹	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗹	No		
Chain of custody agrees with sample labels/containers?	Yes	No 🔽		
Samples in proper container/bottle?	Yes 🗹	No 🗌		
Sample containers intact?	Yes 🖌	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌		
All samples received within holding time?	Yes 🗸	No 🗌		
Container or Temp Blank temperature in compliance?	Yes 🗸	No	Temper	rature 3.2 °C
Water - VOA vials have zero headspace? No VOA vials subm	nitted	Yes 📓	No 💹	
Water - Samples pH checked?	Yes 🔳	No 💹	Checked by:	
Water - Samples properly preserved?	Yes	No 🔳	pH Adjusted?	
Any No response must be detailed in the comments section below.				
comments: Sample B1-10 Was 1	isted on	Heco	c but	Wasnot
recieved A Sample liste	d as "I	BI-9-11	" Was	Verieved
but not used on H	$\sim c \infty$	TLI	Ias 1	about as
allegation of the second of the	e u .	47 V	AUS (upple us
Product of Temp Glack Lar, as Insted on the	Perchance	TRE C	ONTAN	SFL
Client / Person AARON K-PLVS Date contacted: 08	12/12/16	Conta	cted by:	E VIQ JUATE
Response: Sample Id is BI-10"				
ochis i. itb:				
s ann an Airtigeachta 1 Garlagachta				

RE: 26029, Woodlawn Station, 822 E 63rd, Chicago, IL 16080494

Craig Chawla

From:Aaron Colin [aaronc@kplus.com]Sent:Monday, August 15, 2016 3:10 PM

To: Craig Chawla

Subject: RE: 26029, Woodlawn Station, 822 E 63rd, Chicago, IL 16080494

Craig,

Can you run B9-15-16' for VOCs with a standard turnaround time? Thank you.

Aaron

APPENDIX 6

LABORATORY DATA SHEETS - GROUNDWATER

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

August 22, 2016

K-Plus Engineering, LLC 15 Spinning Wheel Drive Hinsdale, IL 60521

Telephone: (312) 207-1600 Fax: (312) 831-2191

Analytical Report for STAT Work Order: 16080660 Revision 0

RE: 26029, Woodlawn Station, 824 E. 63rd St., Chicago, IL

Dear Aaron Colin:

STAT Analysis received 5 samples for the referenced project on 8/16/2016 2:06:00 PM. The analytical results are presented in the following report.

All analyses were performed in accordance with the requirements of 35 IAC Part 186 / NELAC standards. Analyses were performed in accordance with methods as referenced on the analytical report. Those analytical results expressed on a dry weight basis are also noted on the analytical report.

All analyses were performed within established holding time criteria, and all Quality Control criteria met EPA or laboratory specifications except when noted in the Case Narrative or Analytical Report. If required, an estimate of uncertainty for the analyses can be provided. A listing of accredited methods/parameters can also be provided.

Thank you for the opportunity to serve you and I look forward to working with you in the future. If you have any questions regarding the enclosed materials, please contact me at (312) 733-0551.

Sincerely,

mm

Frank Capoccia / Project Manager

The information contained in this report and any attachments is confidential information intended only for the use of the individual or entities named above. The results of this report relate only to the samples tested. If you have received this report in error, please notify us immediately by phone. This report shall not be reproduced, except in its entirety, unless written approval has been obtained from the laboratory. This analytical report shall become property of the Customer upon payment in full. Otherwise, STAT will be under no obligation to support, defend or discuss the analytical report.

Client:	K-Plus Engineering, LLC	
Project:	26029, Woodlawn Station, 824 E. 63rd St., Chicago, IL	Work Order Sample Summary
Work Order:	16080660 Revision 0	

Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received
16080660-001A	MW1		8/16/2016 10:45:00 AM	8/16/2016
16080660-002A	MW2		8/16/2016 11:15:00 AM	8/16/2016
16080660-003A	MW3		8/16/2016 11:45:00 AM	8/16/2016
16080660-004A	MW4		8/16/2016 12:00:00 PM	8/16/2016
16080660-005A	MW5		8/16/2016 12:50:00 PM	8/16/2016

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Report Date: Print Date:	August 22, 2016 August 22, 2016	ANALYTICAL RESULTS
Client:	K-Plus Engineering, LLC	Client Sample ID: MW1
Work Order:	16080660 Revision 0	Tag Number:
Project:	26029, Woodlawn Station, 824 E.	63rd St., Chicago, Collection Date: 8/16/2016 10:45:00 AM
Lab ID:	16080660-001A	Matrix: Aqueous

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW8260B (SW5030B)		Prep Date:		Analyst: JNM	
Acetone	ND	0.020	,	mg/L	1	8/20/2016
Benzene	ND	0.0050		mg/L	1	8/20/2016
Bromodichloromethane	ND	0.0050		mg/L	1	8/20/2016
Bromoform	ND	0.0050		mg/L	1	8/20/2016
Bromomethane	ND	0.010		mg/L	1	8/20/2016
2-Butanone	ND	0.020		mg/L	1	8/20/2016
Carbon disulfide	ND	0.010		mg/L	1	8/20/2016
Carbon tetrachloride	ND	0.0050		mg/L	1	8/20/2016
Chlorobenzene	ND	0.0050		mg/L	1	8/20/2016
Chloroethane	ND	0.010		mg/L	1	8/20/2016
Chloroform	ND	0.0050		mg/L	1	8/20/2016
Chloromethane	ND	0.010		mg/L	1	8/20/2016
Dibromochloromethane	ND	0.0050		mg/L	1	8/20/2016
1,1-Dichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,2-Dichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,1-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
cis-1,2-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
trans-1,2-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
1,2-Dichloropropane	ND	0.0050		mg/L	1	8/20/2016
cis-1,3-Dichloropropene	ND	0.0010		mg/L	1	8/20/2016
trans-1,3-Dichloropropene	ND	0.0010		mg/L	1	8/20/2016
Ethylbenzene	ND	0.0050		mg/L	1	8/20/2016
2-Hexanone	ND	0.020		mg/L	1	8/20/2016
4-Methyl-2-pentanone	ND	0.020		mg/L	1	8/20/2016
Methylene chloride	ND	0.0050		mg/L	1	8/20/2016
Methyl tert-butyl ether	ND	0.0050		mg/L	1	8/20/2016
Styrene	ND	0.0050		mg/L	1	8/20/2016
1,1,2,2-Tetrachloroethane	ND	0.0050		mg/L	1	8/20/2016
Tetrachloroethene	ND	0.0050		mg/L	1	8/20/2016
Toluene	ND	0.0050		mg/L	1	8/20/2016
1,1,1-Trichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,1,2-Trichloroethane	ND	0.0050		mg/L	1	8/20/2016
Trichloroethene	ND	0.0050		mg/L	1	8/20/2016
Vinyl chloride	ND	0.0020		mg/L	1	8/20/2016
Xylenes, Total	ND	0.015		mg/L	1	8/20/2016

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Report Date: Print Date:	August 22, 2016 August 22, 2016	ANALYTICAL RESULTS
Client:	K-Plus Engineering, LLC	Client Sample ID: MW2
Work Order:	16080660 Revision 0	Tag Number:
Project:	26029, Woodlawn Station, 824 E.	63rd St., Chicago, Collection Date: 8/16/2016 11:15:00 AM
Lab ID:	16080660-002A	Matrix: Aqueous

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW8260B (SW5030B)		Prep Date:		Analyst: JNM	
Acetone	ND	0.020	,	mg/L	1	8/20/2016
Benzene	ND	0.0050		mg/L	1	8/20/2016
Bromodichloromethane	ND	0.0050		mg/L	1	8/20/2016
Bromoform	ND	0.0050		mg/L	1	8/20/2016
Bromomethane	ND	0.010		mg/L	1	8/20/2016
2-Butanone	ND	0.020		mg/L	1	8/20/2016
Carbon disulfide	ND	0.010		mg/L	1	8/20/2016
Carbon tetrachloride	ND	0.0050		mg/L	1	8/20/2016
Chlorobenzene	ND	0.0050		mg/L	1	8/20/2016
Chloroethane	ND	0.010		mg/L	1	8/20/2016
Chloroform	ND	0.0050		mg/L	1	8/20/2016
Chloromethane	ND	0.010		mg/L	1	8/20/2016
Dibromochloromethane	ND	0.0050		mg/L	1	8/20/2016
1,1-Dichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,2-Dichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,1-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
cis-1,2-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
trans-1,2-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
1,2-Dichloropropane	ND	0.0050		mg/L	1	8/20/2016
cis-1,3-Dichloropropene	ND	0.0010		mg/L	1	8/20/2016
trans-1,3-Dichloropropene	ND	0.0010		mg/L	1	8/20/2016
Ethylbenzene	ND	0.0050		mg/L	1	8/20/2016
2-Hexanone	ND	0.020		mg/L	1	8/20/2016
4-Methyl-2-pentanone	ND	0.020		mg/L	1	8/20/2016
Methylene chloride	ND	0.0050		mg/L	1	8/20/2016
Methyl tert-butyl ether	ND	0.0050		mg/L	1	8/20/2016
Styrene	ND	0.0050		mg/L	1	8/20/2016
1,1,2,2-Tetrachloroethane	ND	0.0050		mg/L	1	8/20/2016
Tetrachloroethene	ND	0.0050		mg/L	1	8/20/2016
Toluene	ND	0.0050		mg/L	1	8/20/2016
1,1,1-Trichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,1,2-Trichloroethane	ND	0.0050		mg/L	1	8/20/2016
Trichloroethene	ND	0.0050		mg/L	1	8/20/2016
Vinyl chloride	ND	0.0020		mg/L	1	8/20/2016
Xylenes, Total	ND	0.015		mg/L	1	8/20/2016

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Report Date: Print Date:	August 22, 2016 August 22, 2016	ANALYTICAL RESULTS
Client:	K-Plus Engineering, LLC	Client Sample ID: MW3
Work Order:	16080660 Revision 0	Tag Number:
Project:	26029, Woodlawn Station, 824 E.	63rd St., Chicago, Collection Date: 8/16/2016 11:45:00 AM
Lab ID:	16080660-003A	Matrix: Aqueous

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW8260B (SW5030B)		Prep Date:		Analyst: JNM	
Acetone	ND	0.020	,	mg/L	1	8/20/2016
Benzene	ND	0.0050		mg/L	1	8/20/2016
Bromodichloromethane	ND	0.0050		mg/L	1	8/20/2016
Bromoform	ND	0.0050		mg/L	1	8/20/2016
Bromomethane	ND	0.010		mg/L	1	8/20/2016
2-Butanone	ND	0.020		mg/L	1	8/20/2016
Carbon disulfide	ND	0.010		mg/L	1	8/20/2016
Carbon tetrachloride	ND	0.0050		mg/L	1	8/20/2016
Chlorobenzene	ND	0.0050		mg/L	1	8/20/2016
Chloroethane	ND	0.010		mg/L	1	8/20/2016
Chloroform	ND	0.0050		mg/L	1	8/20/2016
Chloromethane	ND	0.010		mg/L	1	8/20/2016
Dibromochloromethane	ND	0.0050		mg/L	1	8/20/2016
1,1-Dichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,2-Dichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,1-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
cis-1,2-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
trans-1,2-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
1,2-Dichloropropane	ND	0.0050		mg/L	1	8/20/2016
cis-1,3-Dichloropropene	ND	0.0010		mg/L	1	8/20/2016
trans-1,3-Dichloropropene	ND	0.0010		mg/L	1	8/20/2016
Ethylbenzene	ND	0.0050		mg/L	1	8/20/2016
2-Hexanone	ND	0.020		mg/L	1	8/20/2016
4-Methyl-2-pentanone	ND	0.020		mg/L	1	8/20/2016
Methylene chloride	ND	0.0050		mg/L	1	8/20/2016
Methyl tert-butyl ether	ND	0.0050		mg/L	1	8/20/2016
Styrene	ND	0.0050		mg/L	1	8/20/2016
1,1,2,2-Tetrachloroethane	ND	0.0050		mg/L	1	8/20/2016
Tetrachloroethene	ND	0.0050		mg/L	1	8/20/2016
Toluene	ND	0.0050		mg/L	1	8/20/2016
1,1,1-Trichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,1,2-Trichloroethane	ND	0.0050		mg/L	1	8/20/2016
Trichloroethene	ND	0.0050		mg/L	1	8/20/2016
Vinyl chloride	ND	0.0020		mg/L	1	8/20/2016
Xylenes, Total	ND	0.015		mg/L	1	8/20/2016

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Report Date: Print Date:	August 22, 2016 August 22, 2016	ANALYTICAL RESULTS
Client:	K-Plus Engineering, LLC	Client Sample ID: MW4
Work Order:	16080660 Revision 0	Tag Number:
Project:	26029, Woodlawn Station, 824 E.	63rd St., Chicago, Collection Date: 8/16/2016 12:00:00 PM
Lab ID:	16080660-004A	Matrix: Aqueous

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW8260B (SW5030B)		Prep	Date:	Analyst: JNM	
Acetone	ND	0.020	,	mg/L	1	8/20/2016
Benzene	ND	0.0050		mg/L	1	8/20/2016
Bromodichloromethane	ND	0.0050		mg/L	1	8/20/2016
Bromoform	ND	0.0050		mg/L	1	8/20/2016
Bromomethane	ND	0.010		mg/L	1	8/20/2016
2-Butanone	ND	0.020		mg/L	1	8/20/2016
Carbon disulfide	ND	0.010		mg/L	1	8/20/2016
Carbon tetrachloride	ND	0.0050		mg/L	1	8/20/2016
Chlorobenzene	ND	0.0050		mg/L	1	8/20/2016
Chloroethane	ND	0.010		mg/L	1	8/20/2016
Chloroform	ND	0.0050		mg/L	1	8/20/2016
Chloromethane	ND	0.010		mg/L	1	8/20/2016
Dibromochloromethane	ND	0.0050		mg/L	1	8/20/2016
1,1-Dichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,2-Dichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,1-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
cis-1,2-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
trans-1,2-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
1,2-Dichloropropane	ND	0.0050		mg/L	1	8/20/2016
cis-1,3-Dichloropropene	ND	0.0010		mg/L	1	8/20/2016
trans-1,3-Dichloropropene	ND	0.0010		mg/L	1	8/20/2016
Ethylbenzene	ND	0.0050		mg/L	1	8/20/2016
2-Hexanone	ND	0.020		mg/L	1	8/20/2016
4-Methyl-2-pentanone	ND	0.020		mg/L	1	8/20/2016
Methylene chloride	ND	0.0050		mg/L	1	8/20/2016
Methyl tert-butyl ether	ND	0.0050		mg/L	1	8/20/2016
Styrene	ND	0.0050		mg/L	1	8/20/2016
1,1,2,2-Tetrachloroethane	ND	0.0050		mg/L	1	8/20/2016
Tetrachloroethene	ND	0.0050		mg/L	1	8/20/2016
Toluene	ND	0.0050		mg/L	1	8/20/2016
1,1,1-Trichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,1,2-Trichloroethane	ND	0.0050		mg/L	1	8/20/2016
Trichloroethene	ND	0.0050		mg/L	1	8/20/2016
Vinyl chloride	ND	0.0020		mg/L	1	8/20/2016
Xylenes, Total	ND	0.015		mg/L	1	8/20/2016

2242 West Harrison St., Suite 200, Chicago, IL 60612-3766 Tel: (312) 733-0551 Fax: (312) 733-2386 STATinfo@STATAnalysis.com Accreditations: IEPA ELAP 100445; ORELAP IL300001; AIHA-LAP, LLC 101160; NVLAP LabCode 101202-0

Report Date: Print Date:	August 22, 2016 August 22, 2016	ANALYTICAL RESULTS
Client:	K-Plus Engineering, LLC	Client Sample ID: MW5
Work Order:	16080660 Revision 0	Tag Number:
Project:	26029, Woodlawn Station, 824 E.	63rd St., Chicago, Collection Date: 8/16/2016 12:50:00 PM
Lab ID:	16080660-005A	Matrix: Aqueous

Analyses	Result	RL	Qualifier	Units	DF	Date Analyzed
Volatile Organic Compounds by GC/MS	SW82	60B (SW5	6030B)	Prep	Date:	Analyst: JNM
Acetone	ND	0.020		mg/L	1	8/20/2016
Benzene	ND	0.0050		mg/L	1	8/20/2016
Bromodichloromethane	ND	0.0050		mg/L	1	8/20/2016
Bromoform	ND	0.0050		mg/L	1	8/20/2016
Bromomethane	ND	0.010		mg/L	1	8/20/2016
2-Butanone	ND	0.020		mg/L	1	8/20/2016
Carbon disulfide	ND	0.010		mg/L	1	8/20/2016
Carbon tetrachloride	ND	0.0050		mg/L	1	8/20/2016
Chlorobenzene	ND	0.0050		mg/L	1	8/20/2016
Chloroethane	ND	0.010		mg/L	1	8/20/2016
Chloroform	ND	0.0050		mg/L	1	8/20/2016
Chloromethane	ND	0.010		mg/L	1	8/20/2016
Dibromochloromethane	ND	0.0050		mg/L	1	8/20/2016
1,1-Dichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,2-Dichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,1-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
cis-1,2-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
trans-1,2-Dichloroethene	ND	0.0050		mg/L	1	8/20/2016
1,2-Dichloropropane	ND	0.0050		mg/L	1	8/20/2016
cis-1,3-Dichloropropene	ND	0.0010		mg/L	1	8/20/2016
trans-1,3-Dichloropropene	ND	0.0010		mg/L	1	8/20/2016
Ethylbenzene	ND	0.0050		mg/L	1	8/20/2016
2-Hexanone	ND	0.020		mg/L	1	8/20/2016
4-Methyl-2-pentanone	ND	0.020		mg/L	1	8/20/2016
Methylene chloride	ND	0.0050		mg/L	1	8/20/2016
Methyl tert-butyl ether	ND	0.0050		mg/L	1	8/20/2016
Styrene	ND	0.0050		mg/L	1	8/20/2016
1,1,2,2-Tetrachloroethane	ND	0.0050		mg/L	1	8/20/2016
Tetrachloroethene	ND	0.0050		mg/L	1	8/20/2016
Toluene	ND	0.0050		mg/L	1	8/20/2016
1,1,1-Trichloroethane	ND	0.0050		mg/L	1	8/20/2016
1,1,2-Trichloroethane	ND	0.0050		mg/L	1	8/20/2016
Trichloroethene	ND	0.0050		mg/L	1	8/20/2016
Vinyl chloride	ND	0.0020		mg/L	1	8/20/2016
Xylenes, Total	ND	0.015		mg/L	1	8/20/2016

Analysis	2247 W Harrison
STAT	

Analysis Corporation 2242 W. Hurrison Suite 200, Chicago, Illinois 60612 Phone: (312) 733-0551 Fax: (312) 733-2386

e-mail address: STATinfø@STATAnalysis.com	AIHA, NVLAP and NELAP accre	edited		
	CHAIN OF CUS	TODY RECORD	Z	863
IPANY: K-NUNS ENAINCERINS.		P.O. No.:		
ect Number: 26029	Client Tracking No.:			
act Name. (.)/ C. I. C. L.		I		

63523 Page: 0f 1	e C					Tum Around:		Results Needer	1 / am/pm	Lab No.:	109	202	60	FUC	<u> </u>									Laboratory Work Order No.:	1 C. 3~ (ac. 2)		Received on Ice: Yes Vo] .	Temperature: 2, 1, °C
ODY RECORD N^{0} : 8	0. No.:		uote No.:																					mments:				eservation Code: $A = None$ $B = HNO_3$ $C = NaOH$	
CHAIN OF CUST	.d	Client Tracking No.:	ð	Lican DL	Walchessen	Phone:	Fax:	e-mail: adronca kalus.com	aken Time Time attrix No. of	1 aken M CC C Pr Containers	1/16/045 WINKI X 3	1 11 1 X 3 X	1145 1 1 1 3 1	(200) × 3	1250 V X 3 X	3								Date/Time: 8/16/14 14:06 Co	Date/Time: 8//6/16 14:06	Date/Time:	Date/Time:	Date/Time:	
	Company: K-YLUS Engineerins	Project Number: 26029 👻 🐇	Project Name: Worldwr Strfim	Project Location: , & 24 E 6 3 MSr C	Sampler(s): Aarm CSin & Pakicia	Report To: Maron Colin		QC Level: 1 2 3 4	Client Sample Number/Description: Date T		MW I &//6	m W J	MWZ	MY	MW S									Relinquished by: (Signature)	Received by: (Signature)	Relinquished by: (Signature) /	Received by: (Signature)	Relinquished by: (Signature)	Pereived hv. (Simetura)

ŝ	

in aludy egracy (s. 1997) - State

STAT Analysis Corporation

Samp	le Receipt Che	ecklist	
Client Name K-PLUS		Date and Time Received:	8/16/2016 2:06:00 PM
Work Order Number 16080660		Received by: JDR	
Checklist completed by:	3/16/14 Date	Reviewed by: Jok	- 8/17/16
Matrix: Carrier nar	me <u>Client Delivered</u>	1	
Shipping container/cooler in good condition?	Yes 🗹	No Not Present]
Custody seals intact on shippping container/cooler?	Yes	No Not Present	2
Custody seals intact on sample bottles?	Yes	No 🗌 Not Present 🕨	
Chain of custody present?	Yes 🗹	No	
Chain of custody signed when relinquished and received?	Yes 🖌	No	
Chain of custody agrees with sample labels/containers?	Yes 🖌	No	
Samples in proper container/bottle?	Yes 🔽	No	
Sample containers intact?	Yes 🗹	No	
Sufficient sample volume for indicated test?	Yes 🗹	No	
All samples received within holding time?	Yes 🗹	No 🛄	
Container or Temp Blank temperature in compliance?	Yes 🗹	No Tempera	ture 3.6 °C
Water - VOA vials have zero headspace? No VOA vials s	submitted	Yes 🗹 No 🗌	
Water - Samples pH checked?	Yes	No E Checked by:	
Water - Samples properly preserved?	Yes 📓	No E pH Adjusted?	
Any No response must be detailed in the comments section below	V.		
Correlationstady signed as a			1875 - 18790, Januar, annan annan anna anna anna anna an
Comments: Stady agrees a as in proper contained as in proper contained			
1 - Sugge 2 Store			
in received with			
$\mathrm{Fst}_{\mathrm{c}}(M_{\mathrm{c}})_{\mathrm{c}} = \mathrm{e}^{\mathrm{i} \frac{1}{2}}$			
Client / Person Date contacted:		Contacted by:	
Response:			
ingeneration and a second s Second second second Second second			

APPENDIX 7

BORING LOGS

Suite 320 15 Spinning Wheel Drive Hinsdale, Illinois 60521 312.207.1600

BORING / W	VELL NUMBER	COORDINATES]							
B1/MV	V1	NA											
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION							
26029		Woodlawn	Station			6253 S.Cottage Gro	ove Avenue, Chicago,	IL					
GEOLOGIS	Г	1				DRILLING CONTRACTOR	-						
Aaron	Colin					Envirodynamics							
DRILLING I	EQUIPMENT / MET	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD START - FINISH DATE							
GeoPro	obe					Direct Push		8:20-8:30	8/11/	2016			
WELL INST	ALLED?	CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE				
Yes		PVC / 1 inc	h			PVC	5 ft	1 in		0.01			
ELEVATIO	N OF:	GROUND SURFACE	E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE				
(FT. ABOVI	E M.S.L.)		101.44		102.	9	93.44 - 88.44	92.14	8/	11/2016			
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.			
						fill							
<u> </u>						concrete							
2		50	23			concrete							
						fill							
4					-								
6						dark stained sand							
0		75	135	SPO									
8													
Ē						light grey sand							
<u> </u>						ingine groy suite							
10		80	164.7	SPO									
	B1 (10')	80	104.7	510									
F	(-*)												
12													
						saturated grey silt							
<u> </u>	B1 (12-14')												
14		90	13.5	NO									
16													
10													
- 18													
20													
20					1								
				I	I								

Ш	Ш	CONCRET
		FILL

Suite 320 15 Spinning Wheel Drive Hinsdale, Illinois 60521 312.207.1600

BORING / W	VELL NUMBER	COORDINATES								
B2/MV	W2	NA								
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION				
26029		Woodlawn	Station	l		6253 S.Cottage O	Grove Avenue, Chicago,	IL		
GEOLOGIS	Т					DRILLING CONTRACTOR				
Aaron	Colin					Envirodynamics				
DRILLING I	EQUIPMENT / MET	ГНОD		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE	
GeoPro	obe					Direct Push		8:30-8:40	8/11/	2016
WELL INST	'ALLED?	CASING MAT. / DI	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE	
Yes		PVC / 1 inc	ch			PVC	5 ft	1 in		0.01
ELEVATIO	N OF:	GROUND SURFAC	E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE	
(FT. ABOVI	E M.S.L.)		103.27		104.5	59	95.27 - 90.27	92.09	8/	11/2016
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.
						£11				
						1111				
2		20	6.0							
			6.2							
<u> </u>										
4										
					1	rocky fill				
<u> </u>						roonly ini				
6		40	40	PO						
		40	40	10		dark sand				
<u> </u>										
8										
						fine dark sand				
<u> </u>	B2 (8-10')									
10		60	60	SPO						
12					-					
				Slight PO		light grey saturat	ed fine sand			
	B2 (13-14)									
14	D2 (10 11	90	90							
				NO						
16										
10					-					
18										
10		1								
<u> </u>										
20										
					1					

Suite 320 15 Spinning Wheel Drive Hinsdale, Illinois 60521 312.207.1600

BORING / W	WELL NUMBER	COORDINATES												
B3/MV	W3	NA												
PROJECT N	JUMBER	PROJECT NAME				PROJECT LOCATIO	N							
26029		Woodlawn	Station	l		6253 S.Cott	age Grove Avenue, Chicago,	IL						
GEOLOGIS	Т	1				DRILLING CONTRA	CTOR							
Aaron	Colin					Envirodyna	mics							
DRILLING	EQUIPMENT / MET	THOD		SIZE / TYPE OF BIT		SAMPLING METHO	SAMPLING METHOD START - FINISH DATE							
GeoPre	obe					Direct Push		9:10-9:20	8/11/	2016				
WELL INST	ALLED?	CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE					
Yes		PVC / 1 inc	h			PVC	5 ft	1 in		0.01				
ELEVATIO	N OF:	GROUND SURFACE	E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE					
(FT. ABOVI	E M.S.L.)		101.82		103.5	57	93.82 - 88.82	92.38	8/	11/2016				
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.				
						tan sandy fi	11							
						tall salidy II.	11							
2	D2 (0 41)	50	4.1											
	B3 (0-4')	50	4.1											
<u> </u>														
4						dark sandy f								
										-				
<u> </u>														
6		50	27											
		50	2.7			concrete								
						light top gon	dy and							
8						fight tan san								
10	B3 (9-11')	80	2.3											
	, ,					saturated lig	ght tan sandy soil							
_														
12					4									
						saturated lig	tht grey fine sand							
1.4														
14		80	2											
16														
					1									
18														
<u> </u>														
20														
]									

1010101

Suite 320 15 Spinning Wheel Drive Hinsdale, Illinois 60521 312.207.1600

BORING / W	VELL NUMBER	COORDINATES											
B4/MV	V4	NA											
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION	I						
26029		Woodlawn	Station	l		6253 S.Cotta	age Grove Avenue, Chicago,	IL					
GEOLOGIS	Г	-				DRILLING CONTRACTOR							
Aaron	Colin					Envirodynan	nics						
DRILLING I	EQUIPMENT / MET	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD)	START - FINISH I	DATE				
GeoPro	obe					Direct Push		9:20-9:30	8/11/	2016			
WELL INST	ALLED?	CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE				
Yes		PVC / 1 inc	h			PVC	5 ft	1 in		0.01			
ELEVATION	N OF:	GROUND SURFACE	E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE				
(FT. ABOVI	E M.S.L.)		100.68		102.8	33	92.68 - 87.68	90.7	8/	11/2016			
DEPTH	LAB	PECOVERV	PID	DEMADKS	UNIFIED		DESCRIPTION		GEO	WELL			
DEFIN	SAMPLE	(%)	(nnm)	KEWAKKS	CLASS		DESCRIPTION		GEO.	CONST.			
		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(FF-11)										
						£11							
						1111							
2		25	0.0	NO									
		25	0.0	NO									
<u> </u>													
4													
										-			
\vdash													
6		50	0.0	NO		brick							
		50	0.0	110		fill							
<u> </u>													
8													
						concrete							
						tan saturated	sandy soil						
10		80	0.0	NO		tan saturateu	sandy son						
	B4 (10-11)												
12					_								
14													
14		90	44.6	NO		1.1.							
	B4 (14-16"					light grey fin	ie sandy soll						
16	D · (1 · 10)												
10													
18													
		1											
⊢													
20													
L		1	1	<u>I</u>	1	1							

Suite 320 15 Spinning Wheel Drive Hinsdale, Illinois 60521 312.207.1600

BORING / WELL NUMBER		COORDINATES				1				
B5/MW5		NA								
PROJECT NUMBER		PROJECT NAME				PROJECT LOCATION				
26029		Woodlawn Station				6253 S.Cottage Grove Avenue, Chicago, IL				
GEOLOGIST						DRILLING CONTRACTOR				
Aaron Colin						Envirodynamics				
DRILLING EQUIPMENT / METHOD			SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH DATE			
GeoProbe						Direct Push		9:50-10:5(8/11/2016		
WELL INSTALLED?		CASING MAT. / DIAMETER		SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE	
Yes		PVC / 2 inch				PVC	5 ft	2 in		0.01
ELEVATION OF:		GROUND SURFACE		TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE	
(FT. ABOVE M.S.L.)		102.51		107.9		97	94.51 - 89.51	93.61	8/	11/2016
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.
						asphalt				
2			1			concrete				
		50 0	0.0	NO		concrete				
						brick				
						fill				
4						1 1 1				
						brick				
6		25	0.0	NO		fill				
_ °										
8						brick				
						tan sandy soil				
		-				tun sundy son				
10	P5 (0, 11')	20	0.0	NO						
	БЈ (9-11)	20	0.0	NU		saturated tan f	fine sand			
F		1								
12										
						saturated dark	fine sand			
14		80	0.0	NO						
						saturated fine	grey sandy soil			
16					-	Suturated The	grey sundy som			
18										
10		1								
20										
					1					
		I								

BORING / W	VELL NUMBER	COORDINATES				1						
B6		NA										
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION						
26029		Woodlawn	Station	l		6253 S.Cotta	ge Grove Avenue, Chicago,	IL				
GEOLOGIS	Г					DRILLING CONTRACTOR						
Aaron	Colin					Envirodynamics						
DRILLING I	EQUIPMENT / MET	HOD		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE			
GeoPro	obe					Direct Push		9:30-9:40	8/11/	2016		
WELL INST	ALLED?	CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE			
No												
ELEVATION	N OF:	GROUND SURFACE	E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE			
(FI. ABOVI	± M.S.L.)											
DEPTH	LAB	RECOVERY	PID	REMARKS	UNIFIED		DESCRIPTION		GEO.	WELL		
	SAMPLE	(%)	(ppm)		CLASS.					CONST.		
						fill (dark soil)						
<u> </u>												
2		50	0.0	NO								
						brick						
4					-	1 ("11						
						clay fill						
6		25	0.0	NG								
		25	0.0	NO								
<u> </u>												
8												
						brick and grav	vel					
						saturated tan	sandy soil					
10	B6 (9-11')	25	0.0	NO		saturated tail,	sandy som					
12												
- 12												
\vdash												
14												
\vdash												
16												
19												
10	ļ											
\vdash												
20												
				I	1				-			

BORING / WELL NUMBER COORDINATES													
B7		NA											
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION							
26029		Woodlawn	Station	l		6253 S.Cottage Grove Avenue, Chicago, IL							
GEOLOGIS	Т	.				DRILLING CONTRACTOR							
Aaron	Colin					Envirodynamics							
DRILLING I	EQUIPMENT / ME'	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE				
GeoPro	obe					Direct Push		11:10-11:	3 8/	11/2016			
WELL INST	'ALLED?	CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE				
No													
ELEVATIO	NOF:	GROUND SURFACE	E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE				
(11. ABOVI	3 WI.3.E.)	•			-								
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.			
						tan sandy fill							
						black sandy fill							
2		- 75	0.0	NO		onder sundy init							
4						clay fill							
— Ť					-	arey sandy soil							
						grey sandy som							
6		70	0.0	NO									
		70	0.0	NO									
						ton conducati							
8					_	tall salidy soll							
	B7 (8-9')					light tan sandy soil							
10						saturated tan sand							
10		75	0.0	NO									
12						saturated grey clay							
					1								
14		1											
16					-								
18													
		1											
<u> </u>													
20													
	1	L	1		1				1				

BORING / WELL NUMBER COORDINATES													
B8		NA											
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION							
26029		Woodlawn	Station	l		6253 S.Cottage C	Grove Avenue, Chicago,	IL					
GEOLOGIS	r					DRILLING CONTRACTOR							
Aaron	Colin					Envirodynamics							
DRILLING F	EQUIPMENT / MET	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE				
GeoPro	be					Direct Push			8/11/	2016			
WELL INST	ALLED?	CASING MAT. / DIA	AMETER	SCREEN: TYPE		MATERIAL	LENGTH	DIAMETER	SLOT SIZE	_010			
No													
ELEVATION	N OF:	GROUND SURFAC	E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE				
(FT. ABOVE	E M.S.L.)												
			1	1	1								
DEPTH	LAB	RECOVERY	PID	REMARKS	UNIFIED		DESCRIPTION		GEO.	WELL			
	SAMPLE	(%)	(ppm)		CLASS.					CONST.			
2							MET REFUSAL						
							MET KEI USME						
4													
6													
					-								
10													
- 10													
12													
14													
16													
18													
20													
						CONCRET	CAND		DIGED				

Suite 320 15 Spinning Wheel Drive Hinsdale, Illinois 60521 312.207.1600

B9 NA construction 20020 Woodlawn Station 6233 S. Cottage Grove Avenue, Chicago, IL. 20020 Woodlawn Station 6233 S. Cottage Grove Avenue, Chicago, IL. 20020 Bartine Contractions Envirodynamics 20021 Somethy Market Bartine Contractions 20020 Contraction Somethy Market Bartine Contractions 20021 Contraction Somethy Market Bartine Contractions 20021 Contraction Tract Present Bartine Contractions 20021 Contraction Structure Tract Present Description 20021 Contraction Structure Tract Present Description 20021 Contraction Structure Tract Present Description Contraction Structure 20121 Contraction Structure Tract Present Description Contraction Structure 20211 LAB RECOVERY PID REMARKS UNIFIED DESCRIPTION CECO Weill 212 Contraction Structure Contraction Structure Contra	BORING / V	RING / WELL NUMBER COORDINATES												
Induct Transma PROPERTIONATION PROPERTION PROPERTION PROPERTION PROPERTION PROPERTION PROPERTION PROPERTIES PROPERIES PROPERTIES PROPERTIES	B9		NA											
26029 Woodlawn Station 6233 S. Cottage Grove Avenue, Chicago, IL Aaron Colin Envirodynamics State Tressitowics State Tressitowics Main Colin State Tressitowics State Tressitowics State Tressitowics Main Colin Cases Natr. Inductrie State Tressitowics State Tressitowics Main Colin Cases Natr. Inductrie State Tressitowics State Tressitowics No Cases Natr. Inductrie State Tressitowics OW State Tressitowics State Tressitowics Main Colin Cases Natr. Inductrie State Tressitowics OW State Act. Inductrie State Tressitowics OW State Act. Inductrie Main Colin Cases Natr. Inductrie State Tressitowics OW State Act. Inductrie State Tressitowics OW State Act. Inductrie Main Colin Cases Natr. Inductrie Main Concentrie Pin Description Cases Natr. Inductrie Cases Natr. Inductrie Cases Natr. Inductrie Cases Natr. Inductrie Main Concentrie Ado 2.2 <td< td=""><td>PROJECT N</td><td>UMBER</td><td>PROJECT NAME</td><td></td><td></td><td></td><td colspan="8">PROJECT LOCATION</td></td<>	PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION							
OPEN_DOST PRILING CONTACTOR Arron Colin Envirolymanics SMALENG LIGHDARY FACTOR BYAR FRUM DATE OPEL_DOST (ACTOR Direct Push MUL INVERCE CARD COLIN No CARD COLING STREACE ORION STREACE TOP WALL CARGO PT ADOTE MSL) CARD COLING STREACE DEPTH LAB SAMPLE RECOVERY (%) PPD REMARKS UNIFED CARD COLING STREACE TOP WALL CARGO (%) PPD REMARKS UNIFED CARD COLING STREACE TOP WALL CARGO (%) PPD REMARKS UNIFED CARD COLING STREACE CARD STREACE (%) PPD REMARKS UNIFED (%) PPD (%) 2.2	26029		Woodlawn	Station			6253 S.Cottage Grove Avenue, Chicago, IL							
Auron Colin Environdynamics GeoProbe 262:1Y19:07 BT SMETEX Settingo 11:40-11:4 8/11/2016 GeoProbe CANNEA MATTENNO Direct Push 11:40-11:4 8/11/2016 WILL INSTRUMENT CANNEA MATTENNO Direct Push 11:40-11:4 8/11/2016 WILL INSTRUMENT CANNEA MATTENNO Direct Push LENOTT DARRENT 8/07 5/27 OF CONNEA CANNEA MATTENNO CONNEAL DARRENT DIRECT PUSH DIRE	GEOLOGIS	Т					DRILLING CONTRACTOR							
DBLINE QUBINEST METHOD SZC/TYPE 0F BIT SAMELNO METHOD PTAFE TENSINDATE GEOPTODE Direct Push 11:40-11:2 8'11/2016 WELL DSTALLED? CASING MAT. JOLAMETER SCREDC TYPE MATERIAL LENGTH DMETER SLOT SGE No CASING MAT. JOLAMETER SCREDC TYPE MATERIAL LENGTH DMETER SLOT SGE No CASING MAT. JOLAMETER SCREDC TYPE MATERIAL LENGTH DMETER SLOT SGE NO CASING MAT. JOLAMETER SCREDC TYPE MATERIAL LENGTH DMETER SLOT SGE DEPTH LAB RECOVERY PID REMARKS UNIPEE DESCRIPTION GEO. WELL DEPTH LAB RECOVERY PID REMARKS UNIPEE DESCRIPTION GEO. WELL DEPTH LAB RECOVERY PID REMARKS UNIPEE DESCRIPTION GEO. WELL Direck/concrete dark fill concrete and wood tan fill saturated s	Aaron	Colin					Envirodynamics							
GeoProbe Direct Push [1:40:11:: 8/11/2016 No CAUSTO MAY / DIAMETRE CAUSTO MAY / DIAMETRE SCOP SEE SCOP SEE UP TI MULLIPF CAUSTO MAY / DIAMETRE CAUSTO MAY / DIAMETRE SCOP SEE OW SUBJECT TOP & BOTTOM OF SCREES OW SUBJECT DATE DEPTI R ADDI LAB RECOVERY PD REMARKS UNIPED DESCRIPTION OF SUBJECT OW SUBJECT DATE 10 LAB RECOVERY PD REMARKS UNIPED DESCRIPTION OF SUBJECT OW SUBJ	DRILLING	EQUIPMENT / MET	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE				
WILLING CAMBER AND / DAMETER CAME UNCTION OF MALE DEALETIK SLOW / DAMETIK	GeoPr	obe					Direct Push		11:40-11:	8/11/	2016			
No Image: Constraint of the source of t	WELL INST	ALLED?	CASING MAT. / DIA	AMETER	SCREEN: TYPE		MATERIAL	LENGTH	DIAMETER SLOT SIZE					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	No													
DEPTI LAB RECOVERY PD (%) PD (PPM) REMARKS LASS. DESCRIPTION GEO CONST.	ELEVATIO	ELEVATION OF: GROUND SURFACE		E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
SAMPLE (%) (ppm) CLASS. CONST. 2	DEPTH	LAB	RECOVERY	PID	REMARKS	UNIFIED		DESCRIPTION		GEO.	WELL			
$ \begin{bmatrix} 1 \\ 1 \\ 2 \\ 4 \\ 4 \\ 1 \\ 6 \\ 6 \\ 7 \\ 1 \\ 6 \\ 7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		SAMPLE	(%)	(ppm)		CLASS.					CONST.			
$ \begin{bmatrix} 2 \\ 4 \\ 4 \\ 6 \\ 7 \\ 8 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $														
$ \begin{bmatrix} 2 \\ 4 \\ 4 \\ 6 \\ 4 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$							brick/concrete							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							dark fill							
$ \begin{bmatrix} 4 \\ -6 \\ -6 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8 \\ -8$	2		60	60 4.6										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4													
$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	- +					-	dark fill							
$ \begin{bmatrix} 6 \\ 8 \\ 8 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$														
$ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1$	6		40	2.2			concrete and woo	bd						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							tan fill							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8						dark fill							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0						sandy fill with b	ricks						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							saturated stained	soil with slight shoon						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10		40	300.2	SPO		saturateu stameu	son whiti slight sheen						
$\begin{bmatrix} 12 \\ 14 \\ 14 \\ 16 \\ 16 \\ 16 \\ 18 \\ 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$		PO (10 12)												
$\begin{bmatrix} 12 \\ 14 \\ 14 \\ 16 \\ 16 \\ 16 \\ 16 \\ 18 \\ 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	12	D9 (10-12)												
$\begin{bmatrix} 14 \\ 16 \\ 16 \\ 16 \\ 18 \\ 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	12						dout activity of all	4						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				291.9			dark saturated sh	ll						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14		50		SDO									
16 B (15-16') 3.8 grey sand 18 18 10 10 20 10 10 10			50		SrU									
16 B (15-10) grey sand 18 18 20 10		D (15 16)		3.8			amari aon 1							
	16	в (15-16)				-	grey sand							
	10													
	18													
	20													
		1	1	I	1	I				·				

CONCR

BORING / V	RING / WELL NUMBER COORDINATES]							
B10		NA										
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION						
26029		Woodlawn	Station	l		6253 S.Cottage Grove Avenue, Chicago, IL						
GEOLOGIS	Т	•				DRILLING CONTRACTOR						
Aaron	Colin					Envirodynamics						
DRILLING	EQUIPMENT / MET	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE			
GeoPre	obe					Direct Push		12:00-12:	8/11/	/2016		
WELL INST	'ALLED?	CASING MAT. / DIA	AMETER	SCREEN: TYPE		MATERIAL	LENGTH	DIAMETER	SLOT SIZE			
No												
ELEVATIO	ELEVATION OF: GROUND SURFACE		E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE			
(FI. ABOVI	2 M.S.L.)											
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.		
						asphalt						
						concrete						
2		50	0.0	No		concrete						
						dark sandy fill						
4												
4					4	11 - £11						
6		20	20 0.0 NO	NO								
			0.0	NO		brick						
						1 1 1						
8						dark soll						
						tan, sandy soil						
–	B10 (8-10')		0.0			saturated tan sand						
10		80		NO		saturated tail salid						
			0.0									
12	B10 (11-12		0.0			grey saturated sand						
12					1							
14												
16					4							
10												
18												
20												
					1							
ļ			1			1				1		

Suite 320 15 Spinning Wheel Drive Hinsdale, Illinois 60521 312.207.1600

BORING / W	VELL NUMBER	COORDINATES									
B11		NA									
PROJECT N	UMBER	PROJECT NAME	Station			6253 S Cottage Grove Avenue, Chicago, II					
GEOLOGIS	Т	WOOulawii	Station			DRILLING CONTRACTOR					
Aaron	Colin					Envirodynamics					
DRILLING	EQUIPMENT / MET	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE		
GeoPro	obe					Direct Push		12:30-12:4	- 8/11/	2016	
WELL INST NO	'ALLED?	CASING MAT. / DIA	METER	SCREEN: TYPE		MATERIAL	LENGTH	DIAMETER	SLOT SIZE		
ELEVATIO	ELEVATION OF: GROUND SURFACE		Ξ	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE		
(11. ADOVI	E M.3.L.)			1		1			<u> </u>		
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.	
						asphalt					
<u> </u>						concrete					
2		60	0.0								
						dark fill					
4						dark clay fill					
						brick					
						gravel					
0		40	0.0			ton fill					
8						grey fill					
						gravel					
10	B11 (9-10	0.0		slight petroleum		brick					
		90	2.4	odor		dark grev sand					
<u> </u>						saturated grov cand					
12						saturated grey sand					
			0.6	slight petroleum							
14		00		odor							
		90									
	B11 (15-1)		0.0	NO							
16	D11 (10 1)										
18											
20											
20											
L	I	l									

1010101

BORING /	ING / WELL NUMBER COORDINATES			1									
B12		NA											
PROJECT 1	JUMBER	PROJECT NAME				PROJECT LOCATION							
26029		Woodlawn	Station	1		6253 S.Cottage Grove Avenue, Chicago, IL							
GEOLOGIS	Т					DRILLING CONTRACTOR							
Aaron	Colin					Envirodynamics							
DRILLING	EQUIPMENT / ME'	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD		START - FINISH	DATE				
GeoPr	obe					Direct Push		12:40-12:	8/11/	2016			
WELL INS	TALLED?	CASING MAT. / DIA	AMETER	SCREEN:	TYPE	MATERIAL	LENGTH	DIAMETER	SLOT SIZE				
No													
ELEVATIO	N OF:	GROUND SURFACE	E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE				
(FI. ABOV	E M.S.L.)												
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.			
						dark fill							
2		50	0.0	NO									
		20	0.0	110									
4					-								
						sand with silt	(dark)						
6		10											
Ŭ		40	0.0	NO									
8													
						tan, sandy soi	1						
						-							
10		70	0.0	NO									
	B12												
V 12	(10-12')												
▼ 12					1	coturated fina	arou cond						
						saturated fille	grey saild						
14		00	0.0	NO									
		90	0.0	NO									
16					4								
10													
18		1											
20													
				1	1								
	l	l		l	1	I			<u> </u>	1			
						CON	CRETE SAND		RISER				

BORING / WELL NUMBER		COORDINATES				1						
B13		NA										
PROJECT N	UMBER	PROJECT NAME				PROJECT LOCATION	X					
26029		Woodlawn	Station	L		6253 S.Cottage Grove Avenue, Chicago, IL						
GEOLOGIS	Г					DRILLING CONTRACTOR						
Aaron	Colin					Envirodynan	nics					
DRILLING H	EQUIPMENT / ME	THOD		SIZE / TYPE OF BIT		SAMPLING METHOD)	START - FINISH	DATE			
GeoPro	obe					Direct Push		12:50-1:0	(8/11/	2016		
WELL INST	ALLED?	CASING MAT. / DIA	METER	SCREEN: TYPE		MATERIAL	LENGTH	DIAMETER	SLOT SIZE			
No	No											
ELEVATION	NOF:	GROUND SURFAC	E	TOP OF WELL CASING			TOP & BOTTOM OF SCREEN	GW SURFACE	DATE			
(11. ABOVI	. wi.o.e.)	•	-			•						
DEPTH	LAB SAMPLE	RECOVERY (%)	PID (ppm)	REMARKS	UNIFIED CLASS.		DESCRIPTION		GEO.	WELL CONST.		
						dark fill						
						concrete						
2		30	5.8									
						brick						
4						tan sandy so	il					
— Ť												
<u> </u>												
6		70	38									
		70	5.0			black fill						
<u> </u>												
8												
						brown fill						
10						concrete						
		70	512	SPO			.1					
	B13					tan sandy sol	11					
12	(10-12')					dark grey sat	curated soil					
_						dark grev sat	urated sand					
<u> </u>							1					
14		90	26 5			saturated tan	sand					
	B13		-0.0			saturated gre	ey sand					
	(15-16')											
16	· /											
18												
10		1										
⊢ ∣												
20												
		l			I	1			l			

APPENDIX 8

INVESTIGATION PHOTOGRAPHS

PHOTOGRAPHS

Photograph No. 1 B1-MW1

Photograph No. 2 B3-MW3

PHOTOGRAPHS

ΚĐ

Photograph No. 3 B4-MW4

Photograph No. 4 B5-MW5 **PHOTOGRAPHS**

Photograph No. 5 B6

Photograph No. 6 B11

APPENDIX 9

HISTORICAL RECORDS

1950 Certified Sanborn Map

18 19 26 27

۰N

1926 Certified Sanborn Map

18

26

19

27

Volume 16, Sheet 38 Volume 16, Sheet 39 Volume 16, Sheet 40

CHICAGO FIRE DEPARTMENT CITY OF CHICAGO

August 6, 2014

VIA EMAIL

Aaron Colin K-Plus Engineering 329 West 18th Street Chicago, Il 60616 <u>aaronc@kplus.com</u>

FOIA RESPONSE: 14-5222

Dear Mr. Colin:

Thank you for writing to the Chicago Fire Department with your request for information pursuant to the Illinois Freedom of Information Act, 5 ILCS 140/1 et seq.

On July 30, 2014, the attached request was received. Your request has been granted in part and enclosed are documents responsive to your request. Please be advised there are no underground storage tank records for the following addresses:

6249 – 6259 S. Cottage Grove

Sincerely,

Sherri Logan Hicks

Freedom of Information Officer Chicago Fire Department <u>CFDFOIA@citvofchicago.org</u>

Enc.

APPL Qe Fisher - Sur Al Fisher + Dones LOCATION 820 E 63 St OCCUPANCY ACT Channel REMARKS DATE PERNIT CAPAC CONTS. 144/445 28760 4-1000 F.D. 1/2010 R59705 3-1080 Bolucat DATE PERMIT Der Karten Refer 190 fs 500 ે. ં inne state **** ***** C95 197 C FORM £.,

APPENDIX 10

QUALIFICATIONS

K-PLUS ENGINEERING, LLC

Title: Engineer

Education:

BS, General Engineering, University of Illinois, Urbana-Champaign, Illinois

Licenses/Certifications:

OSHA 40 Hour HazMat Training

OSHA 8 Hour Hazardous Waste Training Refresher

HM-126F Safe HazMat Transportation Training

Occupational Safety and Health for Construction Industry Course (OSHA 510)

State of Illinois Department of Health Licensed Asbestos Building Inspector: 100-10513

Area of Expertise:

- Phase I ESA
- LUST
- SRP
- Site Investigation
- TACO
- Remediation

AARON T. COLIN

As a Project Manager for K-Plus Engineering, Mr. Colin is responsible for conducting project oversight and field work activities, preparing applications for air and NPDES permits, as well as writing technical reports to ensure compliance and conformance with environmental regulations and guidelines. The technical skills, effective management, and organizational abilities of Mr. Colin have enabled him to work on a variety of projects, including property assessments, compliance audits, subsurface soil and ground water investigations, asbestos surveys, lead paint surveys, mold surveys, and site remediation projects. Mr. Colin's educational background, strong analytical, technical and communication skills, as well as his project management experience, also allow him to efficiently and effectively communicate technical concepts and issues to a wide variety of constituents.

Mr. Colin served the on-site Assistant Environmental and Safety Engineer for the largest single industrial facility in Illinois. In this contract position, he was responsible for managing and coordinating a variety of ongoing environmental remediation projects at the plant. In addition, Mr. Colin was responsible for all record keeping related to the NPDES, local POTW discharge authorization, and air emission permits at the plant.

The diversity of Mr. Colin's education has enabled him to develop strong analytical and research skills. Prior to joining K-Plus Environmental, Mr. Colin worked as a senior designer on a project for General Electric to develop a more efficient handling system to deliver magnesium oxide insulation into the company's oven-heating coils.

Mr. Colin's background has provided him with a broad base of technical scientific knowledge. In addition to his professional experience, his undergraduate studies at the University of Illinois which focused on the technical aspects of the engineering field included a wide range of engineering programs, including civil, mechanical, chemical, and electrical engineering as well as theoretical and applied mechanics and computer science.

K-PLUS ENGINEERING, LLC

Title: President

Education:

MM, Finance and Managerial Economics, J.L. Kellogg Graduate School of Management, Northwestern University

MPH, Industrial Hygiene and Safety Engineering, University of Illinois at Chicago

BS, Civil Engineering, University of Illinois, Urbana, IL

Licenses/Certifications:

Professional Engineer: IL, IN, IA, FL, KY, LA, MI, MN,MO, NC, OH, PA,SC, TX, and WI

- AHERA Building Inspector: IL and IN
- LUST Site Assessor: WI and IN
- OSHA 40 Hour HazMat Training

OSHA 8-hour On-site Management & Supervisor Training

HM-126F Safe HazMat Transportation Training

Radon Detection Services

Corrective Actions for Ground Water Contamination

FHW –NHI NEPA Courses 142005 142052

DANIEL M. CAPLICE

Mr. Caplice is a licensed professional engineer in 15 states with 30 years of environmental engineering and consulting experience. He has an in-depth understanding of local, state and federal regulations and has performed projects in accordance with CERCLA, RCRA, CWA/Oil Pollution Act, CAA, TSCA, and FIFRA requirements. His specialized areas of expertise are evaluation of contaminated properties, assessment of risk and endangerment, regulatory compliance and permitting, hazardous waste management, industrial processes, Brownfield development, and site management including investigation, remediation, construction management, and monitoring.

Currently, Mr. Caplice is Partner of K-Plus Engineering, a 21 year-old, full service, engineering and consulting company with offices in Illinois and Indiana. As President, Mr. Caplice is responsible for managing and directing the company in addition to his ongoing work as an expert in environmental matters.

For the past 25 years, he has served as a consulting environmental engineer for numerous private, public, and non-profit institutions. His responsibilities have included designing and directing various projects, particularly voluntary cleanups of contaminated soil and ground water sites, underground storage tank remediations, and NPL evaluations, investigations, and cleanups. Mr. Caplice has worked extensively on the investigation and cleanup of numerous active and abandoned industrial facilities, landfills, and other waste sites. He has also served as the project manager or senior technical advisor on hundreds of Phase I and Phase II Environmental Assessments at a multitude of sites, from small, undeveloped parcels of property to multi-location industrial facilities. Finally, Mr. Caplice has served as a technical expert on numerous State and Federal cases pertaining to the investigation and cleanup of contaminated properties as well as industrial hygiene and safety related issues pertaining to the investigation and remediation of contaminated property.

Mr. Caplice also has experience in the regulatory analysis of projects for compliance with federal and state environmental regulations, guidance, protocols, and procedures. His environmental regulatory experience includes evaluating compliance of private party actions, reviewing and preparing comments on proposed environmental laws and administrative rules, reviewing site documents and preparing detailed comments, and serving as a technical expert in various environmental cases. Mr. Caplice is also regular speaker at environmental conferences and seminars.

Prior to joining K-Plus, Mr. Caplice served in several capacities for the USEPA, Region 5, including Manager of a Superfund unit responsible for sites in Illinois and Indiana, and Manager of the Pre-Remedial Unit that was responsible for the investigation and assessment of abandoned waste sites (CERCLIS sites) for possible inclusion on the Superfund National Priorities List. While at the USEPA, he also regularly represented the Agency at the International Joint Commission on Water Quality in the Great Lakes.